Preventing Duchenne Muscular Dystrophy Cardiomyopathy Through Antagonism of the Thromboxane Prostanoid Receptor: An FDA Funded Phase 2 Clinical Trial

Larry W. Markham¹, Jonathan H. Soslow², Erica J. Carrier³, James D. West³, Jerry Fox⁴, Leo Pavliv⁴ and Ines Macias-Perez⁴

¹Division of Cardiology, Department of Pediatrics, Riley Children’s Hospital, Indianapolis, IN; ²Division of Cardiology, Department of Pediatrics, Vanderbilt University Medical Center (VUMC), Nashville TN; ³Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, VUMC, Nashville TN; ⁴Cumberland Pharmaceuticals Inc., Nashville, TN

BACKGROUND

- Muscular dystrophy (MD) is associated with mechanical damage and increased membrane permeability of muscle cells. In the heart, this causes progressive weakness and cardiac fibrosis in Duchenne (DMD).
- Isoprostanes, products of oxidative stress, are increased in DMD and can signal through the thromboxane/prostanoid receptor (TPR) to cause fibrosis. TPR activation increases calcium levels inside the heart muscle cells and could contribute to arrhythmia or heart damage in DMD.
- We thus hypothesized that TPR activation contributes to the cardiac phenotype of DMD, and that blocking the TPR would be cardioprotective in mouse models of MD.

MOUSE MODELS

- DMD mouse models:
 - Utrophin/dystrophin double knockout (DKO)→Evaluated at 10 weeks of age
 - 2nd generation dystrophin/RNA telomerase component double knockout (mdx/mTR), which has shortened telomeres→Evaluated at 6 months of age, with a midpoint echo at 3 months
- Limb-girdle muscular dystrophy (LGMD) mouse model: Delta-sarcoglycan knockout (dSG)→Evaluated at 3 and 6 months of age.

Mice were given either normal drinking water, or water containing 25 mg/kg/day of the TPR antagonist ifetroban, beginning at weaning. Water and drug changed 1x/week.

PRECLINICAL DATA

Ifetroban prevents cardiac fibrosis and improves survival in DMD mice

Treatment with the TPR antagonist ifetroban (If) improves survival (A), normalizes fractional shortening and ejection fraction (B) and decreases epicardial intimal fibrosis (C; n=6) in dSG KO LGMD male mice. Fibrotic area was quantified from trichrome-stained whole slices in Leica Image Analysis using the same trichrome-defined mask image for all slides. We also decreased phospho-Smad2/3 (D), a TGF-β signaling molecule (D; n=2). Comparison by unpaired t-test; intervening lanes were removed from blot in D. Utrophin-dystrophin double knockout DMD mice (DKO) and dystrophin KO mice with short telomeres (G2 mdx/mTR) have increased survival (E, G) and improved LV cardiac index with ifetroban treatment (F, H). The results of log-rank test (F, H) comparisons are shown. (H) is male mice only, due to sex differences of cardiac output in fully grown mice.*, p<0.05 by log-rank test. dSG KO = delta-sarcoglycan knockout.

CENTRAL HYPOTHESIS

Our preclinical studies demonstrate ifetroban is cardioprotective in several muscular dystrophy models of heart disease.

These data have led us to design the proposed randomized, placebo-controlled, multicenter phase 2 trial to test the central hypothesis that Thromboxane Receptor signaling contributes to cardiac inflammation and thus treatment with ifetroban will impact heart muscle disease in DMD patients.

TRIAL DESIGN

- 48 DMD participants
 - ≥ 7 years of age
 - Stable or No steroids allowed
 - EF ≥ 35% by MRI/Echo
 - ACEI, BB & ARB allowed
 - Aldosterone receptor antagonists & exon-skipping agents allowed

Ifetroban

- 12 months of treatment
- 48 DMD participants needed ≥ 7 years of age
- Office visits
- 3 Months of treatment

The FIGHT DMD Clinical Trial will determine the safety, pharmacokinetics and efficacy of ifetroban in Duchenne muscular dystrophy.

Ifetroban is being studied as a potential anti-fibrotic medication in several diseases but is not approved for and has never been studied in DMD.

Ifetroban is a treatment thought to impact the heart disease associated with DMD.

ACKNOWLEDGEMENTS

The preclinical studies were supported by the Fight DMD Foundation, Cumberland Pharmaceutical Inc., NHLBI R31 HL135011-01A1 (Carrier) and the Biomedical Research Associates.