Conference report on contractures in musculoskeletal and neurological conditions

Glen H. Nuckolls PhD1 | Kathi Kinnett MSN, APRN2 | Sudarshan Dayanidhi PT, PhD3 | Andrea A. Domenighetti PhD3 | Tina Duong MPT4 | Yetriib Hathout PhD5 | Michael W. Lawlor MD, PhD6,7 | Sabrina S. M. Lee PhD8 | S. Peter Magnusson PT, DMSc9,10,11 | Craig M. McDonald MD12,13 | Elizabeth M. McNally MD, PhD14 | Natalie F. Miller DPT15 | Bradley B. Olwin PhD16 | Preeti Raghavan MD17 | Thomas J. Roberts PhD18 | Seward B. Rutkove MD19 | John F. Sarwark MD20 | Claudia R. Senesac PT, PhD21 | Leslie F. Vogel MS PT22 | Glenn A. Walter PhD23 | Rebecca J. Willcocks PhD21 | William Z. Rymer MD, PhD3 | Richard L. Lieber PhD3

1Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
2Parent Project Muscular Dystrophy, Hackensack, New Jersey
3The Shirley Ryan AbilityLab, Chicago, Illinois
4Department of Neurology, Stanford University, Palo Alto, California
5School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Johnson City, New York
6Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
7Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
8Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
9Department of Physical and Occupational Therapy, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
10Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
11Department of Orthopedic Surgery, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
12Department of Physical Medicine & Rehabilitation, University of California Davis School of Medicine, Sacramento, California
13Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California
14Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
15Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, Ohio
16Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Colorado
17Rusk Rehabilitation, New York University School of Medicine, New York, New York
18Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
19Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
20Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
21Physical Therapy Department, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
22Department of Rehabilitation, Seattle Children's Hospital, Seattle, Washington
23Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida

Abbreviations: CP, cerebral palsy; DMD, Duchenne muscular dystrophy; ECM, extracellular matrix; EIM, electrical impedance myography; LMN, lower motor neuron; ROM, range of motion; UMN, upper motor neuron.
Correspondence
Glen H. Nuckolls, PhD, National Institute of Neurological Disorders and Stroke, 6001 Executive Blvd, Bethesda, MD 20892. Email: glen.nuckolls@nih.gov

Funding information
This workshop was supported by National Institute of Child Health and Human Development, National Institute of Neurological Disorders and Stroke, Parent Project Muscular Dystrophy, and Shirley Ryan AbilityLab

Abstract
Limb contractures are debilitating complications associated with various muscle and nervous system disorders. This report summarizes presentations at a conference at the Shirley Ryan AbilityLab in Chicago, Illinois, on April 19–20, 2018, involving researchers and physicians from diverse disciplines who convened to discuss current clinical and preclinical understanding of contractures in Duchenne muscular dystrophy, stroke, cerebral palsy, and other conditions. Presenters described changes in muscle architecture, activation, extracellular matrix, satellite cells, and muscle fiber sarcomeric structure that accompany or predispose muscles to contracture. Participants identified ongoing and future research directions that may lead to understanding of the intersecting factors that trigger contractures. These include additional studies of changes in muscle, tendon, joint, and neuronal tissues during contracture development with imaging, molecular, and physiologic approaches. Participants identified the requirement for improved biomarkers and outcome measures to identify patients likely to develop contractures and to accurately measure efficacy of treatments currently available and under development.

KEYWORDS
cerebral palsy, contracture, Duchenne muscular dystrophy, muscle, stroke

1 | PURPOSE OF THE WORKSHOP

A research conference was held at the Shirley Ryan AbilityLab in Chicago, Illinois on April 19–20, 2018, to discuss the causes and treatments of contractures, debilitating consequences of a wide range of conditions including primary myopathies such as Duchenne muscular dystrophy (DMD), and neurological conditions that affect muscle such as stroke and cerebral palsy (CP). Presenters from the meeting are authors of this article. The goals of the meeting were to promote discussion and collaboration among researchers with diverse expertise, gain insights into the causes of contractures, assess biomarkers and current treatments, and identify gaps in understanding that, if addressed, could lead to more effective evidence-based treatments.

2 | CONTRACTURES AND PATIENT IMPACT

There is no universally accepted definition of limb contracture, but reduced range of motion (ROM) accompanied by increased mechanical resistance at the ends of the available range are accepted clinical signs. Contractures in neuromuscular conditions are associated with reduced muscle belly length, while tendon length is less affected. Among the neurological and musculoskeletal conditions associated with contracture, the effects on muscle vary. Some conditions cause muscle hyperactivity, while others cause paralysis or degeneration of muscle fibers and replacement by noncontractile tissue. Muscle weakness or hyperactivity can increase joint static positioning, which may trigger contractures if other predisposing factors are present. Joint pain can be a predictor and/or consequence of contractures in some patients. Contractures cause significant burden on patients due to altered body positioning, decreased independence in performing activities of daily living, and reduced community participation contributing to social isolation and decreased quality of life.

3 | CONTRACTURES IN DMD

Muscular dystrophies are associated with muscle weakness and the replacement of muscle by fat and fibrotic tissue, which contributes to contractures in some patients. Researchers studying the natural history of DMD discussed data on the patterns of contracture involvement and progression. Altered gait biomechanics resulting from weakness in knee and hip extensors increases the risk that individuals will develop ankle equinus contracture prior to loss of ambulation, but wheelchair reliance is most frequently the result of muscle weakness rather than contractures. Contractures develop in the hips and knees in individuals who are nonambulatory when static positioning is more prevalent and weakness does not allow full movement against gravity. Subsequent upper extremity weakness leads to static positioning and contractures in the elbows and wrists. The inability of muscles to move a joint through the full ROM predisposes the joint to contracture. Imbalance in the strength of opposing agonist and antagonist muscles may contribute to this inability in some conditions, although in DMD there is no association between muscle strength imbalance around a joint and contracture frequency or severity. Contracture progression in DMD is further complicated by muscle fiber degeneration and tissue fibrosis. Mouse models of...
muscular dystrophies exhibit progressive muscle weakness and some exhibit muscle fibrosis, but dystrophic mice do not develop obvious contractures. Presenters described considerable variability in contracture formation in people living with DMD. For example, 50% of participants in an ongoing study of MRI biomarkers developed knee contractures >20° soon after loss of ambulation; however, 20% of participants maintained full ROM. (R. Willcocks, unpublished data, collected 2010-2018, communicated June 2019). Additional studies are required to identify genetic and/or environmental factors that allow some patients to avoid contractures.

4 | CONTRACTURES IN NEUROLOGICAL CONDITIONS

Contractures are associated with upper motor neuron (UMN) disorders (eg, CP, stroke) and lower motor neuron (LMN) disorders (eg, Charcot Marie Tooth disease). Weakness is common in UMN and LMN disorders. The limb muscles of patients with UMN disorders often exhibit spasticity, the velocity-dependent increase in tonic stretch reflexes that can lead to muscle overactivation or coactivation of antagonistic muscles resulting in muscle stiffness. However, spasticity is neither sufficient nor required for contractures to develop.9

Cellular and extracellular matrix (ECM) changes in muscle associated with contractures were discussed. Studies of tissue obtained from patients with CP provide evidence that the population of muscle-regenerating satellite cells is decreased by 60% to 70% in contracted muscle.10 Furthermore, the capacity of the remaining satellite cells to generate muscle cells is diminished owing to epigenetic changes that affect expression of myogenic genes.11 The ECM sheaths that separate muscle fibers exhibit increased collagen accumulation in contracted muscle, contributing to tissue stiffness.12

Presenters also discussed the ability of healthy muscle to adjust the number of sarcomeres per myofibril to optimize filament overlap for force production, achieving a proper sarcomere “setpoint.” In individuals with CP, sarcomere setpoint regulation appears disrupted because muscle fascicle lengths can be normal while the number of sarcomeres is significantly reduced. Sarcomeres at longer than optimal lengths may contribute to contracture pathogenesis.13 This disrupted sarcomere setpoint phenomenon has not been observed in mice or nonhuman primates. Additional research is required to understand mechanisms that regulate sarcomere number and to determine whether disruption of this regulation is common to conditions other than CP.

5 | MEASUREMENT OF CONTRACTURES AND BIOMARKERS

Participants at the meeting presented data on the measurement of musculoskeletal anatomy, joint ROM, musculoskeletal tissue architecture, composition, and biomechanics in relation to contractures. The goniometer is the primary instrument used to measure the joint angles that determine ROM and contracture severity. Video-based motion analysis is also used to measure ROM. Other clinical devices used to measure muscle biomechanical properties were discussed, including the myotonometer to measure muscle tone for individuals with UMN signs.14 Ultrasound can measure tendon and muscle kinematics, in particular fascicle length and pennation angle in real time during static and dynamic tasks. Ultrasound shear wave elastography provides an indirect estimate of tissue stiffness in localized muscle regions.15 Electrical impedance myography (EIM), which assesses the muscle-induced alteration in a surface-applied current, is sensitive to myofiber cross-sectional area16 and thus has the potential to measure myofiber deformability during passive or active stretch, which could be valuable in assessing contracture severity and response to therapy. Magnetic resonance imaging and MR spectroscopy have been used to measure muscle volumes, fascicle length, pennation angle, fat accumulation, edema, fibrosis, and remaining contractile tissue. Other MR techniques such as magnetization transfer, spin-lattice relaxation in the rotating frame, diffusion tensor imaging, and the use of contrast agents may provide more information about contracted muscle.

As previously discussed, defects in the regulation of sarcomere number and length may contribute to contractures. A method for measuring sarcomere length with laser diffraction in patients with CP undergoing surgery has provided valuable information.17 With this method, the A-bands within muscle fibers act as a diffraction grating to incident laser light, and diffraction spacing represents sarcomere length. The technique currently requires access to muscle by incision, but work is underway to adapt this technique to a needle/small probe.18 Additional development and research application of contracture-relevant outcome measures and biomarkers are anticipated.

6 | THERAPEUTIC STRATEGIES

Discussions of therapeutic strategies for contractures addressed mechanical treatments (stretching, splinting, and surgical lengthening) as well as pharmacologic approaches. Data were presented from a large natural history study in DMD, revealing that 87% of individuals utilize stretching for contracture prevention or treatment, with or without use of orthoses (R. Willcocks, unpublished data, collected 2010-2018, communicated June, 2019). Even though stretching increases muscle extensibility, stretching regimens performed over periods of months appear not to have clinically important effects on joint ROM.19,20 Increases in muscle extensibility after stretching programs up to 8 weeks may be due to decreased perception of pain from stretching, resulting in acceptance of greater torque application.21 Beneficial physiological effects of stretching unrelated to ROM, such as changes in blood flow to the muscle or decreased discomfort, have not been adequately studied. In addition, the effectiveness of stretching regimens carried out over longer periods is unknown.

Nonsurgical treatments that are administered with the goals of improving or preventing further loss of joint ROM also include serial
casting and night splints in children with DMD or spasticity.22,23 Better understanding of the effects of these treatments on muscle and tendon architecture through studies with ultrasound or MRI may lead to enhancements in their efficacy.

An important perspective was presented at the meeting by the mother of a young man living with DMD. She described her son's struggles when attempting to comply with recommendations for daily stretching and the use of orthotics to prevent contracture development. While parents are willing to do whatever will help their child, she asked that experts prescribe regimes based on their professional judgement and the best available information. Physicians and physical therapists should inform patients of the uncertainty of whether these conservative treatments can prevent or affect contracture progression.19,20

Surgical interventions for contractures focus on helping patients maintain function and comfort. Two studies were presented on outcomes after transverse gastrocnemius-soleus recession for equinus gait in children with CP.24,25 In each study, statistically and clinically significant benefits were found when transverse gastrocnemius-soleus recession was targeted to appropriate patients. In DMD, there is consensus that foot or Achilles tendon surgery may improve gait in boys with significant ankle contracture who are ambulatory and have maintained proximal lower limb strength.26 Boys with severe ankle contracture tend to have insufficient strength to warrant surgery. Surgery for contractures in nonambulatory patients with DMD is not recommended except to address pain or improve wheelchair positioning.26

Several drugs and biologics were discussed that are being explored for their effects in preventing or treating contractures. Studies in animal models of contracture have provided evidence that hyaluronan accumulation in the ECM may alter the viscoelastic properties of muscle, contributing to contracture.27 Results were presented from a preliminary study28 of treatment with intramuscular hyaluronidase, an enzyme that degrades ECM hyaluronan in patients with upper limb muscle stiffness and spasticity after cerebral injury who were at risk of developing contractures. In this study, researchers demonstrated reduced muscle stiffness and increased passive and active joint movement, which persisted 3 to 5 months after treatment. Recent work has provided imaging evidence of hyaluronan accumulation in patients with muscle stiffness after cerebral injury, which changes after treatment with hyaluronidase.29 Also discussed was the follistatin analog FST-288. When it was injected intramuscularly in combination with stretching in a mouse model of immobilization-induced contractures, this compound promoted longitudinal muscle growth.30

Research on strategies to address contracture-associated defects in muscle regeneration were also discussed. Satellite cell-derived myoblasts cultured from contracted muscle of patients with CP exhibited reduced fusion and DNA methylation-dependent inhibition of promyogenic signaling pathways. Studies provided evidence that 5-azacytidine, a drug that alters epigenetic programming, largely reversed the fusion deficits of CP myoblasts and restored gene expression patterns consistent with promyogenic states.11 Further characterization of the defects in muscle and connective tissue cell types in contractures may lead to novel drugs or biologics for contracture prevention or treatment.

7 | FUTURE DIRECTIONS

Discussions at the meeting identified areas of ongoing and future research that may contribute to the level of understanding of contractures required to advance prevention and treatment strategies. To better understand the mechanisms of contracture development, additional studies are required on

- The changes in muscle, tendon, and joint tissues leading up to and associated with contractures by using available technologies including MRI, ultrasound, or EIM to determine fascicle length, pennation angle, and sarcomere number and length, muscle, and tendon biomechanical properties and ECM composition in the conditions for which these parameters have not yet been analyzed
- Proliferative and regenerative capacity or fibrotic potential of progenitor cells in muscle and tendon associated with contractures
- Neurologic activity contributing to spasticity, weakness, altered proprioception, joint pain, and loss of dexterity that are predictors of contractures
- Developing improved animal models of contracture or understanding what makes existing models of disease resistant to contractures.

To better understand why some patients develop contractures early and others do not develop contracture until much later or not at all, additional studies are required of

- The genetic factors associated with contractures within the same musculoskeletal or neurological condition and across different conditions
- Environmental factors such as level of activity/static positioning, pain management, and the effects of long term stretching and other physical therapy regimens
- Prognostic and disease progression biomarkers based on imaging, musculoskeletal tissue composition, electrophysiological measures, biomechanical properties, or body fluid biomolecules.

Knowledge gained through these research avenues can inform the optimization of existing surgical and nonsurgical treatments to lessen the impact of contractures, and these studies may identify targets for the development of novel treatments or preventative measures.

ACKNOWLEDGMENTS

The authors thank Thomas Cheever, PhD (NIAMS/NIH) and Ralph Nitkin, PhD (NICHDI/NIH) for their efforts in planning the conference and contributing to this summary and Carsten Bönnemann, MD (NINDS/NIH) for insightful comments on this meeting summary. This workshop was supported by NICHD, NINDS, PPMD and SRAlab. This article summarizes the research findings presented and topics discussed at the meeting.
CONFLICT OF INTEREST
Craig M. McDonald has received support from and/or has served as a paid consultant for Sarepta Therapeutics, PTC Therapeutics, Santhera Pharmaceuticals, Italfarmaco, Pfizer, and Roche. The remaining authors have no conflicts of interest. The views expressed in this article are the opinions of the authors and are not intended to represent the viewpoint of the National Institutes of Health or its Institutes.

ETHICAL PUBLICATION STATEMENT
We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

ORCID
Glen H. Nuckolls https://orcid.org/0000-0002-7466-6433
Seward B. Rutkove https://orcid.org/0000-0002-6375-3312
Leslie F. Vogel https://orcid.org/0000-0002-0414-1228
Richard L. Lieber https://orcid.org/0000-0002-7203-4520

REFERENCES
10. Dayanidhi S, Dykstra PB, Lubyasuyk V, McKay BR, Chambers HG, Lieber RL. Reduced satellite cell number in situ in muscular contractures of muscles involved in ethical publication and affirm that this report is consistent with those guidelines. J Physiol. 2015;33:1039-1045.