Duchenne Research Overview: The landscape and the opportunities
Duchenne muscular dystrophy

- Caused by a mutation in DMD gene → Absence of dystrophin protein → muscle deterioration and weakness
- X-linked recessive disease with a prevalence of 1:5000 male births
- Progressive multi-system disease affecting:
 - Heart
 - Skeletal muscle
 - Smooth muscle
 - Bone
 - Cognitive function
Genetics

• *DMD* is the largest gene in the human genome
• 79 exons / ~2.5 Million base pairs
• Discovered in 1987

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon deletions</td>
<td>65%</td>
</tr>
<tr>
<td>Exon duplications</td>
<td>10%</td>
</tr>
<tr>
<td>Nonsense and other small changes</td>
<td>25%</td>
</tr>
</tbody>
</table>
Impact of loss of dystrophin

- Membrane instability
- Calcium infiltration
- Inflammation
- Oxygen deprivation
- Fibrosis
- Muscle cell death
• Patient focused multi-disciplinary approach
• Standard of care:
 – Glucocorticoid
 – Multidisciplinary Care
What is a Clinical Trial?

• A trial is an experiment, not a therapy
• Risks and benefits
 – Data Safety Monitoring Boards (DSMB)
 – May assess safety and data during the trial
• Important to listen to pay attention to the informed consent/assent
 – Ask questions!
 – Ensure you understand the study
 – What is the timeline for visits?
 – How is reimbursement being handled?
 – Average length of a study visit?
Study Types

- **Pre-clinical**: Lab and animal studies
- **Phase I**: First in humans; assess safety
 (mechanistic, usually in healthy volunteers, dosing, small n)
- **Phase IIa**: Assess dose requirements and toxicity
- **Phase IIb**: Assess efficacy; “Pivotal”
 - Phase IIa and IIb can be combined
Study Types

– **Phase III**: Classical randomized control placebo trial 1000-3000 subjects
 – In rare disease, this number can be much smaller
– **Phase IV**: Post-Marketing; monitor long term effects
Duchenne Drug Development Pipeline 2019

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase I/II</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Post Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen) [Sarepta]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emflaza (Deflazacort) [PTC Therapeutics]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spironolactone & Eplerenone [Ohio State University]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translarna (Ataluren) [PTC Therapeutics] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebivolol [Armand Trousseau Hospital]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Givinostat [Italfarmaco] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raxone (Idenberg) [Santhera] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053 (Casimersen/Goldirsen) [Sarepta] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG62606 (RO7239361) [Roche] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004) [Catabasis] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen [University Children’s Hospital] **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pamreliumab (FG-3019) [Fibrogen]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01 (Viltolarsen) [NS Pharma]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamorolone (VBP15) [Roveragen] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-9001 Micro-Dystrophin GT [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNK-1411 (Cosyntrpin) [Mallinckrodt] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP-1002 [Capricor]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-188 NF (Carmesense-MD) [Phrixus]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifetroban [Cumberland Pharmaceuticals]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epicatcin [Cardoer Therapeutics]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping (Suvodiren) [WAVE] *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myoblast Transplantation [Chu De Quebec]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon Skipping 45 (DS-5141b) [Daichi Sankyo] **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALGT2 Gene Therapy [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy [Pfizer]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Therapy [Solid]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rimeporide [Esperare]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5051 PPMO [Sarepta]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT702 Exon 2 Skipping [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP0367 (MA-0211) [Mitobridge/Astellas]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = will recruit/recruiting globally
** = will recruit/recruiting EU only
*** = will recruit/recruiting Japan only
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis

- Dystrophin Restoration/Replacement
- Stem Cells
- Traditional Cardiac Drugs
- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Muscle Growth and Protection
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

READ THE RED"
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis

- Dystrophin Restoration /Replacement

- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Muscle Growth and Protection
- Stem Cells
- Selective Androgen Receptor Modulators
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Utrophin Upregulation

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Dystrophin Restoration and Replacement

Exon Skipping (skip over the missing/defective part of the gene)

Exon 45 and 53: **Sarepta Essence** (7-13yo, ambulatory, steroids >6mo)
Casimersen and Golodirsen (Filed for AA)

Exon 53: **NS Pharma** (Phase II extension study)
NS-065/NCNP-01

Exon 51: **WAVE Life Sciences** (Phase II/III, 5-18yo)
WVE-210201
Dystrophin Restoration and Replacement

Stop Codon Read-through (ignore the missing/defective part of the gene)

Ataluren (Translarna): PTC Therapeutics
(Phase III extension study, ≥5yo, ambulatory, steroids ≥12mo, non-sense mutation)
Currently approved by EMA not FDA
Gene Therapies

- AAV virus to deliver micro- or mini-dystrophins
- Single IV administration
- Effect is thought to last ~10 years
- Cannot be repeated at this time
 - Working to avoid the formation of antibodies to the virus
 - Goal – re-dosing
Gene Therapy

Micro-dystrophin: **Nationwide Children’s Hospital / Sarepta**

- Exons 18-58
- Muscle specific
 - Doesn’t cross blood brain barrier
- First trial finished dosing
- Second trial has begun dosing
SGT-001: Ignite DMD **Solid Biosciences**
(Phase I/II, Micro-dystrophin)
- Steroids >24wks
- 4-17 years
- Recruiting

- **PF-06939926**: **Pfizer**
(Phase I, Mini-dystrophin)
- 5-12 years, ambulatory, steroids >6mo
- Recruiting by invitation

Gene Therapy
Gene Therapy

GALGT2 – Nationwide Children’s Hospital (Phase I/IIa, rAAVrh74.MCK.GALGT2)
- 4 years and older, ambulatory, steroids >12wk
- Recruiting
- Upregulate dystroglycan-binding proteins

Exon 2 Duplication Strategy– Nationwide Children’s Hospital
- Preclinical
- Only study looking at duplications
- Specific to duplications in exon 2
Clinical Trials in Duchenne

Exon-Skipping
Gene Therapy
CRISPR/Cas9
Stop-Codon Readthrough

Steroid Replacement
Anti-Fibrotics
Inflammation & Fibrosis
Calcium Regulation
Ryrosodine Receptors
Calcium Homeostasis
Myostatin Inhibition
Follistatin Upregulation via Gene Therapy

Dystrophin Restoration/Replacement

Stem Cells
Traditional Cardiac Drugs

Cardiac
Blood Flow
Mitochondria
nNOS Upregulation
Mitochondrial Biogenesis
Mitochondrial Enhancers

Muscle Growth and Protection

Selecte Androgen Receptor Modulators
Urotropin Upregulation

Stem Cells
Muscle Growth and Regeneration

Biglycan: **Tivorsan Pharma** (pre-clinical)
TVN-102

Anti-myostatin: **Roche** (Phase II/III, 6-11yo, ambulatory, steroids)
RO7239361
Myostatin inhibitor
Anti-inflammatory

Edasalonexent: **Catabasis** (Phase III, 4-7yo, ambulatory, steroid naïve)
 - NFkB inhibitor, anti-fibrotic

Vamorolone: **ReveraGen** (Phase 2b, 4-7yo, ambulatory, steroid naïve)
 - Dissociative steroid
Anti-inflammatory

Givinostat: **Italfarmaco** (Phase III, >6yo, ambulatory, steroids >6mo)
HDAC Inhibitor

MK1411: **Mallinckrodt** (Phase II, 4-8yo, steroid naive)
Synthetic ATCH

Pamrevlumab: **Fibrogen** (Phase II)
Antibody to CTGF
Clinical Trials in Duchenne

Exon-Skipping | Gene Therapy | CRISPR/Cas9 | Stop-Codon Readthrough

Steroid Replacement | Dystrophin Restoration /Replacement

Anti-Fibrotics

Inflammation & Fibrosis

Calcium Regulation

Ryanodine Receptors | Calcium Homeostasis

Myostatin Inhibition | Follistatin Upregulation via Gene Therapy | Selective Androgen Receptor Modulators | Utrophin Upregulation

Cardiac

Blood Flow | Mitochondria

Stem Cells | Mitochondrial Biogenesis | Mitochondrial Enhancers

nNOS Upregulation

Treatment of Duchenne

Muscle Growth and Protection
Clinical Trials in Duchenne

Exon-Skipping
Gene Therapy
CRISPR/Cas9
Stop-Codon Readthrough

Steroid Replacement
Anti-Fibrotics
Calcium Regulation
Ryanodine Receptors
Calcium Homeostasis

Dystrophin Restoration /Replacement

Inflammation & Fibrosis

Cardiac

Blood Flow

Muscle Growth and Protection

Mitochondria

Myostatin Inhibition
Follistatin Upregulation via Gene Therapy
Selective Androgen Receptor Modulators
Utrophin Upregulation

Stem Cells
Traditional Cardiac Drugs

nNOS Upregulation
Mitochondrial Biogenesis
Mitochondrial Enhancers
Mitochondria

Raxone (Idebenone): **Santhera** (Phase III, >10yo, >12mos steroids)
- Preservation of respiratory function
- Delos Trial
 - Steroid naïve complete, Seeking FDA review

Epicatechin: **Cardero Therapeutics** (Phase II)
- Mitochondrial growth
- Reviewing results

MTB-1: **Astellas Pharma** (Pre-clinical)
- Improved mitochondrial function
<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen)</td>
<td>Sarepta</td>
</tr>
<tr>
<td>Emflaza (Deflazacort)</td>
<td>PTC Therapeutics</td>
</tr>
<tr>
<td>Spironolactone & Eplerenone</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Translarna (Ataluren)</td>
<td>PTC Therapeutics</td>
</tr>
<tr>
<td>Nebivolol [Armand Trousseau Hospital]</td>
<td></td>
</tr>
<tr>
<td>Givinostat [Italfarmaco]</td>
<td></td>
</tr>
<tr>
<td>Raxone (Idebenone)</td>
<td>Santhera</td>
</tr>
<tr>
<td>SRP-4045/SRP-4053</td>
<td>Sarepta</td>
</tr>
<tr>
<td>RG6206 (RO7239361)</td>
<td>Roche</td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004)</td>
<td>Catabasis</td>
</tr>
<tr>
<td>Tamoxifen [University Children's Hospital]</td>
<td></td>
</tr>
<tr>
<td>Pamrevlumab (FG-3019)</td>
<td>Fibrogen</td>
</tr>
<tr>
<td>NS-065/NCNP-01</td>
<td>NS Pharma</td>
</tr>
<tr>
<td>Vamorolone (VBP15)</td>
<td>Reveragen</td>
</tr>
<tr>
<td>SRP-9001 Micro-Dystrophin GT</td>
<td>Nationwide Children's Hospital</td>
</tr>
<tr>
<td>MNK-1411 (Cosyntropin)</td>
<td>Mallinckrodt</td>
</tr>
<tr>
<td>CAP-1002 [Capricor]</td>
<td></td>
</tr>
<tr>
<td>P-188 NF (Carmeseal-MD)</td>
<td>Phrixus</td>
</tr>
<tr>
<td>Ifetroban [Cumberland Pharmaceuticals]</td>
<td></td>
</tr>
<tr>
<td>Epicatechin [Cardero Therapeutics]</td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer</td>
<td>Nationwide Children's Hospital</td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping</td>
<td>WAVE</td>
</tr>
<tr>
<td>Myoblast Transplantation</td>
<td>Chu De Quebec</td>
</tr>
<tr>
<td>Exon Skipping 45 (DS-5141b)</td>
<td>Daichi Sankyo</td>
</tr>
<tr>
<td>GALGT2 Gene Therapy</td>
<td>Nationwide Children's Hospital</td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy</td>
<td>Pfizer</td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Therapy</td>
<td>Solid</td>
</tr>
<tr>
<td>Rimeporide [EspeRare]</td>
<td></td>
</tr>
<tr>
<td>SRP-5051 PPMO [Sarepta]</td>
<td></td>
</tr>
<tr>
<td>AT702 Exon 2 Skipping</td>
<td>Nationwide Children's Hospital</td>
</tr>
<tr>
<td>ASP0367 (MA-0211)</td>
<td>Mitobridge/Astellas</td>
</tr>
</tbody>
</table>

* = will recruit/recruiting globally
** = will recruit/recruiting EU only
*** = will recruit/recruiting Japan only

- **EMA Granted Conditional Approval – Aug 2014**
- **FDA Granted Approval via Full Approval - Feb 2017**
- **FDA Granted Approval via Accelerated Approval Pathway - Sept 2016**
Thank you!
What does dystrophin do?
Muscle Growth and Regeneration

- Myostatin Inhibition
 - Domagrozumab
 - Pfizer, Phase 2
 - STUDY TERMINATED
 - BMS 986089 (now Roche)
 - BMS/Roche, Phase 1
 - 6-11yo, ambulatory, steroids >6mos
Normal gene – THE FAT CAT ATE THE BIG RED RAT = Full length dystrophin

In-frame mutation – THE FAT CAT ATE THE **BIG RED** MAD RAT = THE FAT CAT ATE THE MAD RAT = BMD

Out-of-frame mutation – THE FAT CAT ATE THE BIG RED MAD RAT = THE FAT CAT ATE THE BIE DMA DRA T = DMD

Exon-skipping – THE FAT CAT ATE THE **bie d** MA DRA T = THE FAT CAT ATE THE MAD RAT