Duchenne Research Overview: The landscape and the opportunities
Duchenne muscular dystrophy

- Caused by a mutation in *DMD* gene → Absence of dystrophin protein → muscle deterioration and weakness
- X-linked recessive disease with a prevalence of 1:5000 male births
- Progressive multi-system disease affecting:
 - Heart
 - Skeletal muscle
 - Smooth muscle
 - Bone
 - Cognitive function
Genetics

• *DMD* is the largest gene in the human genome
• 79 exons / ~2.5 Million base pairs
• Discovered in 1987

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon deletions</td>
<td>65%</td>
</tr>
<tr>
<td>Exon duplications</td>
<td>10%</td>
</tr>
<tr>
<td>Nonsense and other small changes</td>
<td>25%</td>
</tr>
</tbody>
</table>
Impact of loss of dystrophin

- Membrane instability
- Calcium infiltration
- Inflammation
- Oxygen deprivation
- Fibrosis
- Muscle cell death
Care

• Patient focused multidisciplinary approach
• Standard of care:
 – Glucocorticoid
 – Multidisciplinary Care
What is a Clinical Trial?

• A trial is an experiment, not a therapy
• Risks and benefits
 – Data Safety Monitoring Boards (DSMB)
 – May assess safety and data during the trial
• Important to listen to pay attention to the informed consent/assent
 – Ask questions!
 – Ensure you understand the study
 – What is the timeline for visits?
 – How is reimbursement being handled?
 – Average length of a study visit?
Study Types

– Pre-clinical: lab and animal studies
– Phase I: First in humans; assess safety
 (mechanistic, usually in healthy volunteers, dosing, small n)
– Phase IIa: Assess dose requirements and toxicity
– Phase IIb: Assess efficacy; “Pivotal”
 • Phase IIa and IIb can be combined
Study Types

– **Phase III**: Classical randomized control placebo trial 1000-3000 subjects
 – In rare disease, this number can be much smaller
– **Phase IV**: Post-Marketing; monitor long term effects

![Stages of Clinical Trials](image-url)
Duchenne Drug Development Pipeline 2019

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Sponsor/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen)</td>
<td>Sarepta</td>
</tr>
<tr>
<td>Emflaza (Deflazacort)</td>
<td>PTC Therapeutics</td>
</tr>
<tr>
<td>Spironolactone & Eplerenone</td>
<td>Ohio State University</td>
</tr>
<tr>
<td>Translarna (Ataluren)</td>
<td>PTC Therapeutics</td>
</tr>
<tr>
<td>Nebivolol (Armand Trousseau Hospital)</td>
<td></td>
</tr>
<tr>
<td>Givinostat (Italfarmaco)</td>
<td>**</td>
</tr>
<tr>
<td>Raxone (iDebenone)</td>
<td>Santhera</td>
</tr>
<tr>
<td>SRP-4045/SRP-4053</td>
<td>Sarepta</td>
</tr>
<tr>
<td>RG6206 (RO7239361)</td>
<td>Roche</td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004)</td>
<td>Catabasis</td>
</tr>
<tr>
<td>Tamoxifen (University Children's Hospital)</td>
<td>**</td>
</tr>
<tr>
<td>Pamrevlumab (FG-3019)</td>
<td>Fibrogen</td>
</tr>
<tr>
<td>NS-065/NCNP-01</td>
<td>NS Pharma</td>
</tr>
<tr>
<td>Vamorolone (VBP15)</td>
<td>Reveragen</td>
</tr>
<tr>
<td>SRP-9001 Micro-Dystrophin GT</td>
<td>Nationwide Children's</td>
</tr>
<tr>
<td>MNK-1411 (Cosyntriopin)</td>
<td>Mallinckrodt</td>
</tr>
<tr>
<td>CAP-1002 (Capricor)</td>
<td></td>
</tr>
<tr>
<td>P-188 NF (Carmeseal-MD)</td>
<td>Phrixus</td>
</tr>
<tr>
<td>Ifetroban (Cumberland Pharmaceuticals)</td>
<td></td>
</tr>
<tr>
<td>Epicatechin (Cardero Therapeutics)</td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer</td>
<td>Nationwide Children's</td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping</td>
<td>WAVE</td>
</tr>
<tr>
<td>Myoblast Transplantation</td>
<td>Chu De Quebec</td>
</tr>
<tr>
<td>Exon Skipping 45</td>
<td>Daichi Sankyo</td>
</tr>
<tr>
<td>GALGT2 Gene Therapy</td>
<td>Nationwide Children's</td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy</td>
<td>Pfizer</td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Therapy</td>
<td>Solid</td>
</tr>
<tr>
<td>Rimeporide (EspeRare)</td>
<td></td>
</tr>
<tr>
<td>SGT-5051 PPMO</td>
<td>Sarepta</td>
</tr>
<tr>
<td>AT702 Exon 2 Skipping</td>
<td>Nationwide Children's</td>
</tr>
<tr>
<td>ASP0367 (MA-0211)</td>
<td>Mitobridge/Astellas</td>
</tr>
</tbody>
</table>

* = will recruit/recruiting globally
** = will recruit/recruiting EU only
*** = will recruit/recruiting Japan only

EMA Granted Conditional Approval – Aug 2014

FDA Granted Approval via Full Approval - Feb 2017

FDA Granted Approval via Accelerated Approval Pathway - Sept 2016
Clinical Trials in Duchenne
Clinical Trials in Duchenne
Dystrophin Restoration and Replacement

Exon Skipping (skip over the missing/defective part of the gene)

Exon 45 and 53: **Sarepta Essence** (7-13yo, ambulatory, steroids >6mo)
Casimersen and Golodirsen (Filed for AA)

Exon 53: **NS Pharma** (Phase II extension study)
NS-065/NCNP-01

Exon 51: **WAVE Life Sciences** (Phase II/III, 5-18yo)
WVE-210201
Dystrophin Restoration and Replacement

Stop Codon Read-through (ignore the missing/defective part of the gene)

Ataluren (Translarna): PTC Therapeutics
(Phase III extension study, ≥5yo, ambulatory, steroids ≥12mo, non-sense mutation)
 Currently approved by EMA not FDA
Gene Therapies
• AAV virus to deliver micro- or mini-dystrophins
• Single IV administration
• Effect is thought to last ~10 years
• Cannot be repeated at this time
 – Working to avoid the formation of antibodies to the virus
 – Goal – re-dosing
Gene Therapy

Micro-dystrophin: Nationwide Children’s Hospital / Sarepta
- Exons 18-58
- Muscle specific
 - Doesn’t cross blood brain barrier
- First trial finished dosing
- Second trial has begun dosing
Gene Therapy

SGT-001: Ignite DMD Solid Biosciences (Phase I/II, Micro-dystrophin)
- Steroids >24wks
- 4-17 years
- Recruiting

• PF-06939926: Pfizer (Phase I, Mini-dystrophin)
 - 5-12 years, ambulatory, steroids >6mo
 - Recruiting by invitation
Gene Therapy

GALGT2 – Nationwide Children’s Hospital
(Phase I/IIa, rAAVrh74.MCK.GALGT2)
 – 4 years and older, ambulatory, steroids >12wk
 – Recruiting
 – Upregulate dystroglycan-binding proteins

Exon 2 Duplication Strategy– Nationwide Children’s Hospital
 – Preclinical
 – Only study looking at duplications
 – Specific to duplications in exon 2
Muscle Growth and Regeneration

Biglycan: **Tivorsan Pharma** (pre-clinical)
TVN-102

Anti-myostatin: **Roche** (Phase II/III, 6-11yo, ambulatory, steroids)
RO7239361
Myostatin inhibitor
Anti-inflammatory

Edasalonexent: **Catabasis** (Phase III, 4-7yo, ambulatory, steroid naïve)
- NFkB inhibitor, anti-fibrotic

Vamorolone: **ReveraGen** (Phase 2b, 4-7yo, ambulatory, steroid naïve)
- Dissociative steroid
Anti-inflammatory

Givinostat: **Italfarmaco** (Phase III, >6yo, ambulatory, steroids >6mo)
HDAC Inhibitor

MK1411: **Mallinckrodt** (Phase II, 4-8yo, steroid naive)
Synthetic ATCH

Pamrevlumab: **Fibrogen** (Phase II)
Antibody to CTGF
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Homeostasis
- Ryanodine Receptors

- Dystrophin Restoration/Replacement

- Cardiac

- Calcium Regulation

- Muscle Growth and Protection

- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

- Blood Flow
- Mitochondria
- Stem Cells

- Traditional Cardiac Drugs
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

Parent Project Muscular Dystrophy | EndDuchenne.org
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

Steroid Replacement

- Anti-Fibrotics

Inflammation & Fibrosis

- Calcium Regulation

Ryantidine Receptors

Calium Homeostasis

Myostatin Inhibition

Follistatin Upregulation via Gene Therapy

Selective Androgen Receptor Modulators

Utrophin Upregulation

Dystrophin Restoration /Replacement

Stem Cells

Cardiac

Blood Flow

Mitochondria

nNOS Upregulation

Mitochondrial Biogenesis

Mitochondrial Enhancers

Traditional Cardiac Drugs
Mitochondria

Raxone (Idebenone): Santhera (Phase III, >10yo, >12mos steroids)
- Preservation of respiratory function
- Delos Trial
 - Steroid naïve complete, Seeking FDA review

Epicatechin: Cardero Therapeutics (Phase II)
- Mitochondrial growth
- Reviewing results

MTB-1: Astellas Pharma (Pre-clinical)
- Improved mitochondrial function
Duchenne Drug Development Pipeline 2019

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Sponsor/Institution</th>
<th>Status</th>
<th>Approval Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen)</td>
<td>Sarepta</td>
<td>Preclinical</td>
<td>- EMA Granted Conditional Approval – Aug 2014</td>
</tr>
<tr>
<td>Emflaza (Deflazacort)</td>
<td>PTC Therapeutics</td>
<td>Preclinical</td>
<td>- FDA Granted Approval via Full Approval - Feb 2017</td>
</tr>
<tr>
<td>Spironolactone & Eplerenone</td>
<td>Ohio State University</td>
<td>Phase I/II</td>
<td></td>
</tr>
<tr>
<td>Translarna (Ataluren)</td>
<td>PTC Therapeutics</td>
<td>Phase II</td>
<td>- FDA Granted Approval via Accelerated Approval Pathway - Sept 2016</td>
</tr>
<tr>
<td>Nebivolol</td>
<td>Armand Trousseau Hospital</td>
<td>Phase III</td>
<td></td>
</tr>
<tr>
<td>Givinostat (Italfarmaco)</td>
<td></td>
<td>Post Market</td>
<td></td>
</tr>
<tr>
<td>Raxone (Idebenone)</td>
<td>Santhera</td>
<td>Phase I</td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053</td>
<td>Casimersen/Goldisiren</td>
<td>Phase I/II</td>
<td></td>
</tr>
<tr>
<td>RG6206 (RO7239361)</td>
<td>Roche</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004)</td>
<td>Catabasis</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>University Children's Hospital</td>
<td>Phase III</td>
<td></td>
</tr>
<tr>
<td>Pamrevlumab (FG-3019)</td>
<td>Fibrogen</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01</td>
<td>Viltolarsen</td>
<td>NS Pharma</td>
<td>Phase II</td>
</tr>
<tr>
<td>Vamorolone (VBP15)</td>
<td>Reveragen</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>SRP-9001 Micro-Dystrophin GT</td>
<td>Nationwide Children's</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>MNK-1411 (Cosyntropin)</td>
<td>Mallinckrodt</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>CAP-1002 (Capricor)</td>
<td></td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>P-188 NF</td>
<td>Carmeseal-MD</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Ifetroban</td>
<td>Cumberland Pharmaceuticals</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Epicatechin</td>
<td>Cardero Therapeutics</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer</td>
<td>Nationwide Children's</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping</td>
<td>Suvodirsen</td>
<td>WAVE</td>
<td>Phase II</td>
</tr>
<tr>
<td>Myoblast Transplantation</td>
<td>Chu De Quebec</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Exon Skipping 45 (DS-5141b)</td>
<td>Daichi Sankyo</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>GALGT2 Gene Therapy</td>
<td>Nationwide Children's</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy</td>
<td>Pfizer</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Therapy</td>
<td>Solid</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>Rimeporide</td>
<td>EspeRare</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>SRP-5051 PPMO</td>
<td>Sarepta</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>AT702 Exon 2 Skipping</td>
<td>Nationwide Children's</td>
<td>Phase II</td>
<td></td>
</tr>
<tr>
<td>ASP0367 (MA-0211)</td>
<td>Mitobridge/Astellas</td>
<td>Phase II</td>
<td></td>
</tr>
</tbody>
</table>

* = will recruit/recruiting globally
** = will recruit/recruiting EU only
*** = will recruit/recruiting Japan only
Thank you!
What does dystrophin do?
Muscle Growth and Regeneration

• Myostatin Inhibition
 – Domagrozumab
 • Pfizer, Phase 2
 • STUDY TERMINATED
 – BMS 986089 (now Roche)
 • BMS/Roche, Phase 1
 • 6-11yo, ambulatory, steroids >6mos
Normal gene – THE FAT CAT ATE THE BIG RED RAT = Full length dystrophin

In-frame mutation – THE FAT CAT ATE THE **BIG RED** MAD RAT = THE FAT CAT ATE THE MAD RAT = BMD

Out-of-frame mutation – THE FAT CAT ATE THE **BIG RED** MAD RAT = THE FAT CAT ATE THE BIE DMA DRA T = DMD

Exon-skipping – THE FAT CAT ATE THE **bie d** MA DRA T = THE FAT CAT ATE THE MAD RAT