Second generation micro-dystrophin $(2^{nd} \text{ generation } \mu Dys \text{ AAV vector})$

Dongsheng Duan Ph.D.

Dept. of Molecular Microbiology and Immunology University of Missouri, Columbia, MO

June 28, 2019 PPMD 2019 Conference Orlando, FL, USA

Disclosure

Solid GT, LLC

- Member, Scientific Advisory Committee
- Equity holder
- Sponsored research contractor
- Patent licensed to Solid

20-25 nm 4.5 kb genome Smallest DNA virus

20-25 nm 4.5 kb genome Smallest DNA virus

Strategies to improve AAV μ Dys vector

Strategies to improve AAV μ Dys vector Tissue and cell-specific expression

AAV vector optimization

- enhances targeted delivery to muscle, heart and muscle stem cells.
- reduces immunogenicity of the capsid, microgene, and micro-dystrophin protein.
- increases micro-dystrophin expression level and duration.
- But does not improve micro-dystrophin quality.

<u>Quantity</u> and **quality** of dystrophin are both important for DMD gene therapy.

Once the dystrophin level reaches a threshold, **quality** becomes more important than <u>quantity</u>.

Dystrophin levels and clinical severity in Becker muscular dystrophy patients

J C van den Bergen,¹ B H Wokke,¹ A A Janson,² S G van Duinen,³ M A Hulsker,⁴ H B Ginjaar,⁵ J C van Deutekom,² A Aartsma-Rus,⁴ H E Kan,⁶ J J Verschuuren¹

Conclusions: Our study shows that **dystrophin levels appear not to be a major determinant of disease severity in BMD, as long as it is above approximately 10%.** A significant relation between age and disease course was only found in the exon 45– 47 deletion subgroup. This suggests that at higher dystrophin levels, **the disease course depends more on the mutation site than on the amount of the dystrophin protein produced.**

van den Bergen JC, et al. J Neurol Neurosurg Psychiatry 2013;

Clinical Phenotypes as Predictors of the Outcome of Skipping around DMD Exon 45

Andrew R. Findlay, M.D.,¹ Nicolas Wein, Ph.D.,¹ Yuuki Kaminoh, B.S.,¹
Laura E. Taylor, B.S.,¹ Diane M. Dunn, B.S.,² Jerry R. Mendell, M.D.,^{1,3,4}
Wendy M. King, P.T.,⁴ Alan Pestronk, M.D.,⁵ Julaine M. Florence, D.P.T., Ph.D.,⁵
Katherine D. Mathews, M.D.,⁶ Richard S. Finkel, M.D.,⁷
Kathryn J. Swoboda, M.D.,⁸ Michael T. Howard, Ph.D.,²
John W. Day, M.D., Ph.D.,⁹ Craig McDonald, M.D.,¹⁰ Aurélie Nicolas, Ph.D.,^{11,12}
Elisabeth Le Rumeur, Ph.D.,^{11,12} Robert B. Weiss, Ph.D.,² and
Kevin M. Flanigan, M.D.,^{1,3,4} for the United Dystrophinopathy Project

ANN NEUROL 2015;77:668-674

Becker muscular dystrophy severity is linked to the structure of dystrophin

Aurélie Nicolas^{1,2}, Céline Raguénès-Nicol^{1,2}, Rabah Ben Yaou^{3,4,†}, Sarah Ameziane-Le Hir^{1,2}, Angélique Chéron^{1,2}, Véronique Vié^{1,5}, Mireille Claustres^{6,7,8}, France Leturcq^{3,9,†}, Olivier Delalande^{1,2}, Jean-François Hubert^{1,2}, Sylvie Tuffery-Giraud^{7,8,†}, Emmanuel Giudice^{1,2}, Elisabeth Le Rumeur^{1,2,*}, and the French Network of Clinical Reference Centres for Neuromuscular Diseases (CORNEMUS)

By retrospectively collecting data for a series of French BMD patients, we showed that the age of **dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in \Delta45–48 and \Delta45–49 compared with \Delta45–47 patients**, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ 45–47 and Δ 45–49 patients compared with Δ 45–48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be **dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site**.

Full-length dystrophin vs micro-dystrophin

	Full-length dystrophin
mRNA size	14 kb
cDNA size	11.8 kb
Protein size	427 kD
Exons	76
Domains	4
Spectrin repeats	24
Hinges	4

Full-length dystrophin vs micro-dystrophin

	Full-length dystrophin	Micro-dystrophin
mRNA size	14 kb	
cDNA size	11.8 kb	≤ 4 kb (~1/3 of full)
Protein size	427 kD	≤ 160 kD (~1/3 of full)
Exons	76	
Domains	4	≤ 4
Spectrin repeats	24	≤ 6
Hinges	4	≤ 3

Mini-dystrophin, the era before micro-dystrophin

NATURE · VOL 343 · 11 JANUARY 1990

Very mild muscular dystrophy associated with the deletion of 46% of dystrophin

S. B. England*, L. V. B. Nicholson†, M. A. Johnson†, S. M. Forrest*, D. R. Love*, E. E. Zubrzycka-Gaarn‡, D. E. Bulman‡, J. B. Harris§ & K. E. Davies*||

6.2 kb **\Delta 17-48** minigene

Proband 25-yr-old Body builder

61-yr-old relative Walk with a stick

△17-48 mini-gene (6.2 kb, naturally existing minigene, Davies lab, 1990)

Generation 0 µ**Dys** (≤ 2 repeats) Can fit into AAV but cannot protect muscle

 Δ 17-48 mini-gene (6.2 kb, naturally existing minigene, Davies lab, 1990)

Generation 1 μ Dys (4 or 5 repeats) Can fit into AAV and can protect muscle

Dose nNOS Binding Make a Difference?

Lai et al <u>Journal of Clinical Investigation</u> 119:624, 2009 Lai et al <u>PNAS</u> 2013 Human Molecular Genetics, 2012, Vol. 21, No. 15 3449–3460 doi:10.1093/hmg/dds176 Advance Access published on May 15, 2012

Variable phenotype of del45-55 Becker patients correlated with nNOSµ mislocalization and RYR1 hypernitrosylation

Christel Gentil¹, France Leturcq^{2,3}, Rabah Ben Yaou^{2,4}, Jean-Claude Kaplan³, Pascal Laforet⁵, Isabelle Pénisson-Besnier⁶, Caroline Espil-Taris⁷, Thomas Voit¹, Luis Garcia¹ and France Piétri-Rouxel^{1,*}

Cases	Exons deleted in dystrophin gene	Combined severity class	nNOSµ localization Sarcolemmal
-------	---	-------------------------------	--------------------------------

Human Molecular Genetics, 2012, Vol. 21, No. 15 3449–3460 doi:10.1093/hmg/dds176 Advance Access published on May 15, 2012

Variable phenotype of del45-55 Becker patients correlated with nNOSµ mislocalization and RYR1 hypernitrosylation

Christel Gentil¹, France Leturcq^{2,3}, Rabah Ben Yaou^{2,4}, Jean-Claude Kaplan³, Pascal Laforet⁵, Isabelle Pénisson-Besnier⁶, Caroline Espil-Taris⁷, Thomas Voit¹, Luis Garcia¹ and France Piétri-Rouxel^{1,*}

Cases	Exons deleted in dystrophin gene	Combined severity class	nNOSµ Sarcole	localization			
1 3	45-55 45-55	Moderate Moderate	Yes Yes				
7 8 11 12	45-55 45-55 45-55 45-55	Moderate Moderate Mild Moderate	Yes Yes Yes	With nNOS	\rightarrow	Mild to m dise	oderate ase
2 4	45-55 45-55	Severe + Severe +	No No				
5 6	45-55 45-55	Severe ++ Severe ++	No No	Without nNOS		\longrightarrow	Severe disease
9 10	43-55 45-55	Severe ++ Severe +	No				

Dystrophin contains one membrane binding domain

Dystrophin contains multiple independent membrane-binding domains

Junling Zhao¹, Kasun Kodippili¹, Yongping Yue¹, Chady H. Hakim^{1,2}, Lakmini Wasala¹, Xiufang Pan¹, Keqing Zhang¹, Nora N. Yang², Dongsheng Duan^{1,3,4,5,*} and Yi Lai^{1,*}

Human Molecular Genetics, 2016, Vol. 25, No. 17 3647–3653

Inclusion of MBD1 better prevented eccentric contraction-induced force drop

Micro-dystrophin without MBD1

Eccentric contraction cycle number

EDL (limb muscle)

Inclusion of MBD1 better prevented eccentric contraction-induced force drop

Micro-dystrophin without MBD1

• Micro-dystrophin with MBD1

Eccentric contraction cycle number

EDL (limb muscle)

Inclusion of MBD1 better prevented eccentric contraction-induced force drop

Micro-dystrophin without MBD1

Micro-dystrophin with MBD1

Eccentric contraction cycle number

Eccentric contraction cycle number

EDL (limb muscle)

Diaphragm

Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division

Nicolas A Dumont^{1,2,4}, Yu Xin Wang^{1,2,4}, Julia von Maltzahn¹⁻³, Alessandra Pasut^{1,2}, C Florian Bentzinger¹⁻³, Caroline E Brun^{1,2} & Michael A Rudnicki^{1,2}

Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease.

Feige P, Brun CE, Ritso M, Rudnicki MA.

Cell Stem Cell. 2018 Nov 1;23(5):653-664. doi: 10.1016/j.stem.2018.10.006.

Dystrophin in the heart is different from that in skeletal muscle

	Skeletal muscle	Heart
actin	subsarcolemma filamentous γ-actinl	subsarcolemma filamentous γ -actinl α -actin in thin filament
nNOS	localize at membrane	localize in SR and mitochondria
excessive cytosolic nNOS	nitrosative sress, force reduction, agrevate disease	overexpression alleviate cardiomyopathy
sytrophin	α1, β1	$\alpha 1, \beta 1, \beta 2$
dystrobrevin	α1, α2	α1, α2, α3
Cardiac-specific DGC		cavin-1, ahnak-1, cypher and α B-crystallin

Partial or complete loss of R16-19 is associated with more severe cardiac disease

HUMAN GENE THERAPY, VOLUME 29 NUMBER 7 © 2018 by Mary Ann Liebert, Inc.

Cardiac-Specific Expression of \triangle H2-R15 Mini-Dystrophin Normalized All Electrocardiogram Abnormalities and the End-Diastolic Volume in a 23-Month-Old Mouse Model of Duchenne Dilated Cardiomyopathy

Nalinda B. Wasala¹, Jin-Hong Shin^{1,†}, Yi Lai¹, Yongping Yue¹, Federica Montanaro², and Dongsheng Duan^{1,3–5,*}

Cavin-1 interacts with dystrophin in the heart but not skeletal muscle

Duan lab unpublished

High affinity binding to cavin-1 may underlie enhanced heart protection by ΔH2-R15

Summary

•Current micro-dystrophin is suboptimal.

 Inclusion of nNOS-binding domain improves muscle perfusion and exercise capacity.

 Inclusion of additional membrane-binding domain leds better protection against eccentric contraction injury.

 Inclusion of heart protection domain may better preserve cardiac function.

•Ability to deliver dystrophin to muscle stem cells may improve muscle regeneration.

Acknowledgements

NIH PPMD Jesse's Journey Jackson Freel DMD Research Fund