A NEW ERA OF MEDICINE IS UPON US

Executive Vice President, R&D and Chief Medical Officer

June 29, 2019
FORWARD-LOOKING STATEMENTS

This presentation contains “forward-looking statements.” Any statements that are not statements of historical fact may be deemed to be forward-looking statements. Words such as “believe,” “anticipate,” “plan,” “expect,” “would,” “should,” “will,” “may,” “intend,” “prepare,” “look,” “potential,” “possible” and similar expressions are intended to identify forward-looking statements. These forward-looking statements include statements relating to our goal of treating 100% of individuals with DMD; exon skipping’s goal to restore the reading frame, by skipping over an exon near the deletion; the expectation to have three RNA therapies on the market by 2020, serving ~30% of the DMD community; golodirsen’s expected regulatory action date of August 2019, our plan to submit an NDA to the FDA for casimersen in mid-2019; our studies design and the plan to expand the 5051-201 study to other countries; our plans re PPMO next mutations and the expectation to have more clarity regarding PPMO in mid-2020; our pipeline and the potential benefits of our technologies and scientific approaches, including the potential benefits of PMO and the potential of PPMO to lead to more efficient dosing for patients.

These forward-looking statements involve risks and uncertainties, many of which are beyond our control and are based on our current beliefs, expectations and assumptions regarding our business. Actual results and financial condition could materially differ from those stated or implied by these forward-looking statements as a result of such risks and uncertainties and could materially and adversely affect our business, results of operations and trading price. Potential known risk factors include, among others, the following: our data for our different programs, including golodirsen casimersen, micro-dystrophin and LGMD may not be sufficient for obtaining regulatory approval; our product candidates, including those with strategic partners, may not result in viable treatments suitable for commercialization due to a variety of reasons including the results of future research may not be consistent with past positive results or may fail to meet regulatory approval requirements for the safety and efficacy of product candidates; even if our programs result in new commercialized products, we may not achieve any significant revenues from the sale of such products; success in preclinical testing and early clinical trials, especially if based on a small patient sample, does not ensure that later clinical trials will be successful; we may not be able to execute on our business plans and goals, including meeting our expected or planned regulatory milestones and timelines, clinical development plans, and bringing our product candidates to market, for various reasons including possible limitations of our financial and other resources, manufacturing limitations that may not be anticipated or resolved for in a timely manner, and regulatory, court or agency decisions, such as decisions by the United States Patent and Trademark Office; and those risks identified under the heading “Risk Factors” in Sarepta’s 2018 Annual Report on Form 10-K or and most recent Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission (SEC) and in its other SEC filings.

For a detailed description of risks and uncertainties Sarepta faces, you are encouraged to review Sarepta’s filings with the SEC. We caution investors not to place considerable reliance on the forward-looking statements contained in this presentation. The forward-looking statements in this presentation are made as of the date of this presentation only and, other than as required under applicable law, Sarepta does not undertake any obligation to publicly update its forward-looking statements.
Sarepta Therapeutics’ goal is to develop life-changing precision genetic medicine to treat 100% of individuals with Duchenne muscular dystrophy
OUR CLINICAL EXPERIENCE IN DUCHENNE

- 10+ Years working in Duchenne research
- >500 Participants in clinical trials*
- ~20 Clinical Trials (includes active & planned)

As of Q1 2019
*Includes individual enrollments across all trials
Sarepta’s Pipeline for Duchenne Muscular Dystrophy

<table>
<thead>
<tr>
<th>Program</th>
<th>Discovery</th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golodirsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casimersen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Exon Targets**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5052</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-5050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-9001 Micro-Dystrophin (Nationwide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALGT2 (Nationwide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-Dystrophin (Genethon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISPR/CAS9 (Duke University)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Candidate received accelerated approval in the U.S., confirmatory studies required

**Other exon targets in development: 43, 44, 50, and 55
SAREPTA’S PIPELINE FOR DUCHENNE MUSCULAR DYSTROPHY

- Exondys 51 (Eteplirsen)*
- Golodirsen
- Casimersen
- Exon 52
- Other Exon Targets**
 - SRP-5051
 - SRP-5053
 - SRP-5045
 - SRP-5052
 - SRP-5044
 - SRP-5050
 - SRP-9001 Micro-Dystrophin (Nationwide)
 - GALGT2 (Nationwide)
 - Micro-Dystrophin (Genethon)
 - CRISPR/CAS9 (Duke University)

*Candidate received accelerated approval in the U.S., confirmatory studies required

**Other exon targets in development: 43, 44, 50, and 55

RNA
GENE
EDITING

©2019 SAREPTA THERAPEUTICS. CONFIDENTIAL AND NOT FOR DISTRIBUTION.
COPYING OF THIS MATERIAL BY ANY MEANS WITHOUT SAREPTA’S PRIOR WRITTEN CONSENT IS PROHIBITED
SAREPTA’S PIPELINE FOR DUCHENNE MUSCULAR DYSTROPHY
GOAL OF EXON SKIPPING:

Phosphorodiamidate Morpholino Oligomers (PMOs) assemble in precise sequence, bind to the target, and direct the body to make a shortened functional form of the dystrophin protein.
THREE PMO PROGRAMS TO ADDRESS UP TO 30% OF INDIVIDUALS WITH DUCHENNE

ETEPLIRSEN: PMO for skipping of Exon 51

- Granted US Accelerated Approval in 2016

GOLODIRSEN: PMO for skipping of Exon 53

- New drug application (NDA) submitted to FDA in December, 2018.
- Regulatory action date scheduled for August 2019.

CASIMERSEN: PMO for skipping of Exon 45

- Goal of submitting NDA to FDA in mid-2019 based upon findings from interim muscle biopsies from patients in ESSENCE.

If successful, we will have 3 RNA-therapies by 2020, serving ~30% of the Duchenne community.

Golodirsen and casimersen are investigational and not approved in the United States.

©2019 SAREPTA THERAPEUTICS. CONFIDENTIAL AND NOT FOR DISTRIBUTION. COPYING OF THIS MATERIAL BY ANY MEANS WITHOUT SAREPTA’S PRIOR WRITTEN CONSENT IS PROHIBITED
GOLODIRSEN CLINICAL DEVELOPMENT PROGRAM

PHASE I/II

Study 101\(^1\) Part I
N=12 (golodirsen n=8; placebo n=4)
Age: 6-15 years
IV infusions, dose escalation

Study 101\(^1\) Part II
N=24 (golodirsen)
Age: 6-15 years
IV infusions 30 mg/kg/week

PHASE III

Study 301 (ESSENCE)\(^2\)
N=222 (golodirsen n=111; casimersen n=111)
Age: 7-13 years
IV infusions 30 mg/kg/week

Study 302\(^3\)
N=260 (open label golodirsen or casimersen)
Age: 7-23 years
IV infusions 30 mg/kg/week

Thank you to all of the individuals and families who have participated in Sarepta clinical trials.

Details of all trials can be found on ClinicalTrials.gov. Identifiers: 1. NCT02310906. 2. NCT02500381. 3. NCT03532542

Gooolodirsen and casimersen are investigational and not approved in the United States.

©2019 Sarepta Therapeutics. Confidential and not for distribution. Copying of this material by any means without Sarepta’s prior written consent is prohibited.
GOLODIRSEN CLINICAL DATA: WEEK 48 EXON SKIPPING RESULTS

Did exon skipping occur?

- Increased Exon 53 skipping observed in all patients
- Mean skipping increased from 2.59% at baseline to 18.95% at week 48

GOLODIRSEN CLINICAL DATA: WEEK 48 DYSTROPHIN RESULTS

Is dystrophin protein made?

Western Blot: ~16x mean per-patient fold increase in dystrophin (Baseline to Week 48)

IHC: Confirmed dystrophin localized to sarcolemma (not shown)

Mean Percent Normal Dystrophin

- Absolute Difference of Means (Week 48 vs baseline)
 - +0.92%
 - Fold Increase: 16

P-value <0.001

GOLODIRSEN CLINICAL DATA: SAFETY (4053-101 PARTS 1 AND 2)

• All patients reported at least 1 adverse event after beginning treatment. The majority of these events were non-serious, mild, and unrelated to study drug.

• 4 patients experienced serious events, none of them were considered related to study drug.

• In general, most of the adverse events reported in this study were consistent with what would be expected in a pediatric Duchenne population.

• No serious hypersensitivity events were reported. Rash was the most frequently non-serious hypersensitivity event.

• No patients discontinued due to an adverse event.

A PROPRIETARY AND DIFFERENTIATED APPROACH IN RNA TECHNOLOGY

PHOSPHORODIAMIDATE MORPHOLINO OLIGOMERS (PMO) CHEMISTRY

Specificity: Enhanced affinity for targeting pre-mRNA for precise binding to RNA targets

Stability: Highly resistant to degradation by enzymes

Versatility: Ability to rapidly design and construct drug candidates that are specific for human or pathogen RNA; and target specific tissues

Safety: Built upon a charge-neutral backbone, which may be reflected in tolerability
PHOSPHORODIAMIDATE MORPHOLINO OLIGOMERS (PMO) CHEMISTRY

Specificity: Enhanced affinity for targeting pre-mRNA for precise binding to RNA targets

Stability: Highly resistant to degradation by enzymes

Versatility: Ability to rapidly design and construct drug candidates that are specific for human or pathogen RNA; and target specific tissues

Safety: Built upon a charge-neutral backbone, which may be reflected in tolerability

PEPTIDE PHOSPHORODIAMIDATE MORPHOLINO OLIGOMERS (PPMO) CHEMISTRY

Enhances PMO

- Same precision genetic medicine backbone
- Conjugated peptide greatly increases penetration
- Could potentially lead to more efficient dosing for patients
RESEARCH & DEVELOPMENT: HOW DOES IT WORK?

Proof-of-concept (Cell Culture)
Confirm drug’s mechanism of action

Animal Studies (Mouse, Rat, NHPs)
Test drug safety
Test drug effect

Clinical Trial (Human)
Characterize safety
Smaller population

Clinical Trial (Human)
Characterize effect
Larger population

For more information on our pre-clinical work and Phase 1 study (5051-101, NCT03375255), see archived webinar with PPMD (9 May 2018) and archived presentation from the 2018 PPMD conference
RESEARCH & DEVELOPMENT: HOW DOES IT WORK?

Proof-of-concept (Cell Culture)
Confirm drug’s mechanism of action

Animal Studies (Mouse, Rat, NHPs)
Test drug safety
Test drug effect

Clinical Trial (Human)
Characterize safety
Smaller population

Clinical Trial (Human)
Characterize effect
Larger population

For more information on our pre-clinical work and Phase 1 study (5051-101, NCT03375255), see archived webinar with PPMD (9 May 2018) and archived presentation from the 2018 PPMD conference
AFTER A SINGLE DOSE OF PPMO, IMMUNOHISTOCHEMISTRY PROVIDED EVIDENCE OF DYSTROPHIN UPREGULATION AND PRODUCTION LOCALIZED AT THE SARCOLEMMA

Yellow/orange/green: dystrophin-positive cells; Red: dystrophin-negative cells.

mdx mice at 7 weeks of age were treated with a single IV dose of PPMO at 10, 20, 40, or 80 mg/kg and analyzed at 30 days post-injection (N=4 mice per dose)

Experimental PPMO that targets exon 23 in **mdx** mouse.

EFFECT OF PPMO TREATMENT ON MUSCLE FUNCTION IN 10-WEEK-OLD MDX MICE (DUCHENNE ANIMAL MODEL)

BW, body weight; SE, standard error.

mdx mice at 7 weeks of age were treated with a single IV dose of saline or PPMO at 10, 20, 40, or 80 mg/kg, and WT mice at 7 weeks of age were treated with a single IV dose of saline. Mice were tested for grip strength at 10 weeks of age (3 weeks postinjection) and for rotarod at 9 weeks of age (2 weeks postinjection) (n=10 per group). Values shown are mean ± SE.

Statistics: One-way ANOVA Tukey multiple comparison test data and the significant values shown are vs mdx saline (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

For more information on our pre-clinical work and Phase 1 study (5051-101, NCT03375255), see archived webinar with PPMD (9 May 2018) and archived presentation from the 2018 PPMD conference

5051-101: PHASE 1 STUDY OVERVIEW (NCT03375255)

Single Ascending Dose (SAD) Study Evaluations

- Safety & tolerability
- Pharmacokinetics (PK)

Key Enrollment Criteria

- Patients age 12+ with DMD amenable to exon 51 skipping
- Stable dose of oral corticosteroids for 12 weeks OR no corticosteroids for 12 weeks prior to screening
- No exposure to exon-skipping agents for 6 months prior to screening
- No exposure to gene therapy
- Stable cardiac and pulmonary function
- No changes to cardiac medications for 12 weeks prior to screening

- N=3 patients will be dosed with ≥3 days between each
- Escalation to the next dose level will occur following a safety data review
- Option to then enroll in OLE

5051-201 STUDY DESIGN CURRENTLY ENROLLING IN US AND SOON IN OTHER COUNTRIES

• A Phase 2, Two-Part, Multiple-Ascending-Dose Study of SRP-5051 for Dose Determination, then Dose Expansion, in Patients with Duchenne Muscular Dystrophy Amenable to Exon 51-Skipping Treatment

• Duchenne participants (ambulatory or non-ambulatory) amenable to Exon 51 skipping, ages 7 to 21 years, inclusive.

• Has been on a stable dose of oral corticosteroids for at least 12 weeks prior to study drug administration, or has not received corticosteroids for at least 12 weeks prior to study drug administration.

• Active sites in USA
PPMO NEXT MUTATION

Other Exons

50

52

51

44

53

45
In mid-2020 we plan to have more clarity around this decision.
1. How do I decide between exon skipping and gene therapy for my family?

2. Will exon-skipping treatment impact my ability to receive gene therapy later?
We have built an expansive pipeline dedicated to Duchenne muscular dystrophy with the goal of treating 100% of individuals with the disease.
A NEW ERA OF MEDICINE IS UPON US

2019 PPMD ANNUAL CONFERENCE
Executive Vice President, R&D and Chief Medical Officer
June 29, 2019