

Use of Bayley-III and online screening tools to characterize early childhood behavioral phenotype in boys with Duchenne muscular dystrophy

AL Wagner^{1,2}, AM Connolly³, CM McDonald¹, CEB McCormick⁴, EK Henricson¹

 ¹Human Development Graduate Group, Department of Physical Medicine and Rehabilitation, University of California, Davis
 ²University of Wisconsin Child Development Lab, School of Human Ecology, University of Wisconsin - Madison
 ³Department of Neurology, Washington University in St. Louis
 ⁴Department of Human Development and Family Studies, Purdue University

DMD: A Multisystem Disorder

Duchenne Muscular Dystrophy as a Developmental Disorder

- Cognitive Delays
 - 1-1.5 SD below the mean with same distribution
 - 1/3 cognitively delayed (Cyrulnik et al., 2008; Daoud et al., 2009)
- Language Delay
 - Often first sign of DMD (Lundy et al., 2007; Kaplan, Osborn, & Elias, 1986)
- Social/Behavioral Delay
 - Higher incidence of boys with ADD, ADHD, OCD (Poysky, 2007; Hendriksen & Vles, 2008; Hinton et al., 2006)
- Estimated prevalence of DMD/ASD comorbidity in the literature is *between 3.1-19.6%*

Developmental assessments for children with DMD*

- Monitor physical and developmental milestones and be aware of DMD-specific neurodevelopmental and neuropsychological issues, such as the increased prevalence of intellectual disability, attentiondeficit hyperactivity disorder, and autism spectrum disorder
- Refer to a psychologist for psychological and neuropsychological assessments and interventions when appropriate
- Refer to a speech-language pathologist for suspected delays
- Help the family with **special educational needs** (eg, in the USA, plans include the Individualized Education Programs and 504 plans)
- Identify community resources that might enhance individual and family functioning and coping, such as local social service agencies and patient advocacy organizations

*D. Birnkrant et al. **Diagnosis and management of Duchenne muscular dystrophy, part 3**: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet 2018

Developmental assessments for children with DMD

- Neuropsychological evaluations should be done when cognitive delays, difficulties with emotional and behavioral regulation, or concerns about social skills exist;
- Neuropsychological evaluations should be considered within the first year of diagnosis to establish a baseline
- Re-evaluations should be done every 2–3 years to monitor developmental progress and response to interventions

*D. Birnkrant et al. **Diagnosis and management of Duchenne muscular dystrophy, part 3**: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet 2018

Study 1: MDA Clinical Research Network Study of Infants and Young Boys with DMD

- Multisite study 6 locations
- 24 boys with DMD enrolled under 36 months of age at BL
 - Mean = 22.8 months
 - Range 4.4 35.9 months
- Bayley-III assessments at:
 - Baseline (N = 24)
 - 6 months after baseline (N = 19)
 - 12 months after baseline (N = 12)

(Connolly et al., 2013 & 2014)

Baseline Distribution of Bayley-III Composite Scores

(Connolly et al., 2013)

p≤.0001

в

0.04

0.03

density

0.01

0.00

40

p≤.0001

Longitudinal Bayley-III Cognitive Scaled Scores demonstrate stability over time on average

Longitudinal Bayley-III Expressive Language Scaled Score deficits also demonstrate stability over time

Typical Score 10 DMD Score 8.1

 Table 20. Results of Unconditional Means Model (No Growth) of Bayley-III Expressive

 Language Subscale Scores for Boys with DMD by Age in Months (N=24; Number of

 Observations = 61)

	Unconditional	
Coefficient (SE)	Means Model	
Fixed Effects		
Intercept	8.14***	
Linear Slope		
Quadratic		
Random Effects		
Level-1:		
Within-person	2.49	
Level-2:		
Intercept	7.54	
Linear slope		
Quadratic		
Goodness of Fit		
-2 Log Likelihood	278.9	
AIC	284.9	
BIC	288.4	
~ p <.10, *p<.05, ** p	p<.01, *** p<.001 □	

Longitudinal Bayley-III Social Emotional Scaled Score deficits are variable but stable

Typical Score 10 DMD Score 8.8

Table 23. Results of Unconditional Means Model (No Growth) of Bayley-III Social Emotional Subscale Scores for Boys with DMD by Age in Months (N=24; Number of Observations = 63)

	Unconditional
Coefficient (SE)	Means Model
Fixed Effects	
Intercept	8.86***
Linear Slope	
Quadratic	
Random Effects	
Level-1:	
Within-person	9.69***
Level-2:	
Intercept	1.26
Linear slope	
Quadratic	
Goodness of Fit	
-2 Log Likelihood	302.7
AIC	308.7
BIC	312.2

Longitudinal Bayley-III Receptive Language Scaled Scores show delay that improves with age

Goodness of Fit -2 Log Likelihood

AIC

BIC

234.4

244.4

250.3

~ p <.10, *p<.05, ** p<.01, *** p<.001

Longitudinal Bayley-III Gross Motor Scaled Scores show decline with advancing age

Table 8. Results of Linear Model with Random Intercept of Bayley-III Gross Motor Subscale Scores for Boys with DMD by Age in Months (N=24; Number of Observations = 62)

	Quadrane Model
	without Random
Coefficient (SE)	Intercept
Fixed Effects	
Intercept	6.15***
Linear Slope	-0.067**
Quadratic	
Random Effects	
Level-1:	
Within-person	2.32
Level-2:	
Intercept	0.65
Linear slope	
Quadratic	
Goodness of Fit	
-2 Log Likelihood	240.9
AIC	248.9
BIC	253.6
~ p <.10, *p<.05, **	<i>p</i> <.01, *** <i>p</i> <.001

Study 2 Methods: National online survey using common ASD-focused and developmental *screening* tools

DMD Group

- N = 45 Boys
- Age: Mean 58.6 mos.; 18.1-83.3 mos.
- 27 States
- 28.9% have 3+ children
- 57.7% of respondents & 33.4% of partners have college or grad degree
- 13.3% with income <\$20K
- 40% with income ≥\$100K

Control Group

- N = 39 Boys
- Mean 48.0 mos.; 18.6-82.1 mos.
- 12 States
- 15.6% have 3+ children
- 97.4% of respondents & 70.5% of partners have college or grad degree
- 0% with income <\$20K
- 69% with income \geq \$100K

Screening Tools and Cutpoints for "At Risk" Classification

The percentage of boys with DMD who score in the "At-Risk" range on ASQ-3 and ASQ:SE-2 developmental screeners is higher than that of unaffected boys

Table 41. Fisher's Exact Test of ASQ-3 Subscale Scores & ASQ:SE-2 Total Scores for the DMD Group in comparison to Control Group (One-tailed at 05 significance level)							
Screener [Subscale]	DMD Group Proportion in "At Risk" Category (%)	Control Group Proportion in "At Risk" Category (%)	Significance level/ p value (1-sided)	Post-hoc Power (α =.05)			
ASQ-3 Communication	4/23 (17.4)	0/29 (0)	*0.033	63.9%			
ASQ-3 Gross Motor	19/23 (82.6)	2/29 (6.9)	**<0.001	100%			
ASQ-3 Fine Motor	8/23 (34.8)	1/29 (3.4)	*0.014	84.6%			
ASQ-3 Problem Solving	5/23 (21.7)	1/29 (3.4)	0.053	53.6%			
ASQ-3 Personal Social	10/23 (43.5)	1/29 (3.4)	**0.001	94.9%			
ASQ:SE-2	11/31 (35.5)	1/33 (3.0)	**0.001	92.9%			

*95% confidence interval or .05 significance level

**99% confidence interval or .01 significance level

Strengths and Difficulties Questionnaire shows DMD boys score more frequently in "At-Risk" range for Emotion, Conduct and Peer Difficulties.

Table 20. "No Risk" and "At Risk" Subtotals for DMD & Control Group for each SDQ Subscale and Results of Fisher's Exact Tests (SDQ 2-4 & SDQ 4-10 ratings combined)

	Emot Symp	tional ptoms		Conduct Problems		Hyperactivity		Peer Problems		Prosocial Score		Total Difficulties Score	
	No	At		No	At	No	At	No	At	No	At	No	At
	Risk	Risk		Risk	Risk	Risk	Risk	Risk	Risk	Risk	Risk	Risl	k Risk
DMD (N=38)	32	6		29	9	25	13	27	11	33	5	26	12
Control (N=32)	32	0		30	2	27	5	29	3	31	1	30	2
p-value	*0.021			*0.0	045	0.066		*0.039		0.144		**0.008	
Power	67.	7.2% 51.3%		48.0%		53.1%		31.3%		77.2%			

SDQ 2-4 High Risk & Very High Risk combined for "At Risk" category for this study; SDQ 4-10 High Risk category considered "At Risk" for this study Fisher's Exact Test (1-tailed) (α =.05)

*95% confidence interval

****99%** confidence interval

Bolded numbers included in "At Risk" category

Social Responsiveness Scale-2 screening tool shows increased incidence of "At Risk" behaviors in boys with DMD using standard *and* more liberal cutoffs

	Mild, Moderate & Severe Risk							
		SRS-2 "	At Risk"		SRS-2 Liberal "At Risk" Cutoff			
	DMD	Control			DMD	Control		
	Ratio (%)	Ratio (%)			Ratio (%)	Ratio (%)		
	in	in			in Mild,	in Mild,		
	Moderate	Moderate			Moderate	Moderate		
	& Severe	& Severe		Post hoc	& Severe	& Severe		Post hoc
	Risk	Risk	p value	Power	Risk	Risk	p value	Power
SRS-2 Subscale	Range	Range	(1-tailed)	(α=.05)	Range	Range	(1-tailed)	<u>(α=.05)</u>
Social Awareness	5/37 (13.5%)	6/30 (20%)	0.499	6.1%	8/37 (21.6%)	6/30 (20%)	0.567	3.6%
Social Cognition	5/37 (13.5%)	1/30 (3.3%)	0.186	29.3%	8/37 (21.6%)	1/30 (3.3%)	0.053	60.0%
Social Communication	5/37 (13.5%)	2/30 (6.7%)	0.186	29.3%	9/37 (24.3%)	2/30 (6.7%)	0.089	48.9%
Social Motivation	8/37 (21.6%)	2/30 (6.7%)	**0.013	81.2%	12/37 (32.4%)	2/30 (6.7%)	*0.030	75.3%
Restricted								
Interests & Repetitive	7/37 (18.9%)	1/30 (3.3%)	0.081	50.0%	10/37 (27.0%)	1/30 (3.3%)	*0.023	76.9%
Behavior								
Social Communication & Interaction	5/37 (13.5%)	1/30 (3.3%)	0.186	29.3%	11/37 (29.7%)	1/30 (3.3%)	*0.015	83.4%
Total Score	6/37 (16.2%)	1/30 (3.3%)	0.123	39.6%	11/37 (29.7%)	1/30 (3.3%)	*0.015	83.4%

Conclusions

- Connolly Bayley studies:
 - Early *stable deficits* in cognitive, expressive language, and social emotional domains in addition to gross motor concerns.
 - *Receptive language often improves with age.* Many kids begin to "catch up" with peers by 3-4 years of age though this is variable.
 - **Gross motor declines from infancy onward.** This contradicts the common perception that strength/functional decline begins in middle childhood.
 - Children with Bayley Gross Motor scale deficits *may warrant evaluation* for neuromuscular disease.

• Online screener study:

- ASQ-3, ASQ-SE, SDQ and SRS-2 all show areas of concern in young children with DMD.
- ASQ-3 may *identify risks of fine and gross motor delays* and may help parents with concerns to gain access to earlier DMD diagnostics
- While they *do not diagnose autism*, screening tools demonstrate at-risk behaviors in <u>communication</u>, <u>social communication and motivation</u>, <u>personal conduct</u>, <u>peer relationship</u> and <u>restricted interest/repetitive behavior domains</u> associated with autism spectrum disorders.
- Some behaviors *may pose significant challenges in daily living* and may be *modifiable with early intervention programs.*

Clinical Implications

- Instead of "watch and wait", infants and toddlers with developmental delay concerns and motor delays/weakness should be evaluated by pediatricians for presence of neuromuscular disease (including DMD).
- Present focus of many neuromuscular providers is on strength and motor maintenance but *cognitive and social function should also be systematically addressed*.
- Screening tool use could *increase potential for parents to self advocate for earlier social/cognitive diagnostics* by identifying concerning behaviors.
- Potential for *earlier preschool intervention to address social* and behavioral challenges with family and peers.
- Need to advocate to get DMD on list of "Established Conditions" for each state to improve service eligibility for preschool and early school programs.

Acknowledgements

• MDA Clinical Research Network Investigators

- Anne Connolly, MD Washington University at St. Louis
- Craig McDonald, MD UC Davis
- Erik Henricson, PhD, MPH UC Davis
- Katherine Bushby, MD *Newcastle University on Tyne*
- Kevin Flanigan, MD Ohio State University
- Jerry Mendell, MD Ohio State University
- Peter Karachunsky, MD University of Minnesota
- Basil Darras, MD Harvard University

UC Davis Human Development Graduate Group

- Sally Ozonoff, PhD
- Siwei Liu, PhD
- Leonard Abbeduto, PhD
- Lenna Ontai, PhD
- University of Wisconsin, Madison
 - Amy Wagner, PhD, M.A.Ed.
- Purdue University
 - Carolyn McCormick, PhD
- UC Davis Physical Medicine & Rehabilitation
 - Alina Nicorici, BS
 - Erica Goude, MS
 - Corey Owens, MS
 - Bria Dorsett, BS
 - Laura Knox, BA
 - Laura Friudenberg, BA

Parent Project Muscular Dystrophy

LEADING THE FIGHT TO END DUCHENNE

National Center for Advancing Translational Sciences

Funding and Support

- Bayley study supported by the Muscular Dystrophy Association
- Online survey study supported by the Department of Physical Medicine & Rehabilitation and Parent Project Muscular Dystrophy (recruitment)
- REDCap data platform supported by the UC Davis CTSC and National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), through grant UL1 TR001860.