Parent Project Muscular Dystrophy 2019 Gene Therapy: What we know today ...

Practical Questions & Immune Response

Barry J. Byrne, MD, PhD

Pediatrics and Powell Gene Therapy Center University of Florida, College of Medicine

- Inventor of AAV technology related to neuromuscular disease and AAV production technology
- Member of Pfizer Rare Disease Unit Therapeutic Area Scientific Advisory Committee
- Site investigator Ignite DMD / SLDB, Sarepta, Roche, Italifarmicio, TRINDS,

What is AAV and how are vectors made?

Adeno-Associated Virus (AAV) Vectors

Courtesy of M. Agbandje-McKenna University of Florida

- Inherently non-pathogenic, unique nature of high-dose therapy
- Many serotypes provide wide range of tissue tropism
- Persists long-term without integration
- Risk vs Benefit in favor of therapeutic benefit

Assembling the rAAV Cassette

Assembling the rAAV Cassette

Assembling the rAAV Cassette

rAAV Manufacturing

What are AAV antibodies and why does that matter?

Anti-AAV antibody testing: Neutralizing versus Total antibody

Neutralizing Ab assay:

- In vitro cell-based assay
- Identify binding to the capsid receptor epitope
- Sensitivity is influenced by lack of in vitro transduction
- Positive or negative effects by other serum proteins

Total (binding) Ab assay:

- ELISA assay against intact AAV capsids
- Identifies all antibodies from a polyclonal response
- High reproducibility and sensitivity
- Sensitive at low dilution to predict pre-existing immunity

Management of environmentallyacquired preimmunity

- About 50-60% of individuals are preimmuned to AAV
- Preimmunity of AAV is an exclusion criteria for most of studies
- 1) Is the threshold used in clinical trials appropriate?
- 2) What is the most effective immunomodulation regimen to decrease levels of preexisting AAV immunity?
- 3) What level of of preexisting antibody precludes treatment?

Is receiving DMD gene therapy durable for the life-span?

MAYBE ... but probably NOT!

Early exposure = Less durable

Myoblasts are not exposed to AAV vectors

Reduced transgene expression in newborn primates over the first year due to growth

Transgene activity

AAV Gene Therapy and Immunomodulation

Anti-AAV response is universal in gene therapy studies.

- Primary antibody formation effects vector clearance and efficacy.
- Repeat dosing must be considered in pediatric patients due to decline in genome copy number with somatic growth and muscle regeneration.

The Approach

 B-cell depletion with rituximab & sirolimus prior to AAV exposure will successfully block immune responses to the AAV capsid <u>and</u> transgene

• The strategy could allow for incremental or repeat administration of a vector of the same AAV serotype

B-cell depletion prevents the development of antibodies against AAV1

Corti et al., 2017 and 2014; Elder et al. 2013

No antibodies vs the transgene or capsid after repeated AAV-GAA with immunosuppression

AAV9-DES-GAA twice + Immunomodulation

Antibodies vs. GAA

Antibodies vs. AAV9

Immunomodulation increases transgene expression after single and repeat AAV-GAA dosing in NHP

Human data: preliminary results

Relevance to DMD Gene Therapy

- 1. Management of anti-capsid antibody formation is important in both primary and secondary responses.
- 2. Address pre-immunity in older DMD population.
- 3. Enable early treatment (esp. with NBS).
- 4. Potential for incremental dosing to reach desired effect.

Confirmed findings in mdx mice DMD

- Negative control
- Immunomodulation
- AAV9-µDys, 3x10¹³ vg/kg
- AAV9-µDys, 2x10¹⁴ vg/kg
- AAV9-µDy twice
- AAV9-µDys twice with immunomodulatoin

Can existing anti-AAV be reduced to allow for entry into a gene therapy study?

YES!

Pre-immunity Study

33

Immunosuppression reduced anti-AAV9 titers

All immunomodulation groups were below inclusion criteria cutoff after 4 weeks of treatment

- Preimmune ~117 U/ml
- CD20+Sirol ~7 U /mL
- Velcade ~25 U/mL
- CD20+Sirol+Velcade ~15 U/mL

Steroid treatment does not affect antibody titers

What are the side effects of gene therapy?

Side Effects to Consider

- 1) Fever
- 2) Nausea
- 3) Direct effect on blood count
- 4) Liver inflammation
- 5) Generalized systemic immune response
- 6) Late effects are undetermined

- AAV can be made in sufficient quantity and quality for registration studies – commercial supply is an ongoing challenge.
- Prevention is required to block antibodies to AAV.
- Early exposure = Less durable.
 BUT ... Primary immune response to AAV can be blocked.

- Pre-existing Ab can be treated to allow for AAV gene therapy.
- AAV gene therapy is associated with side-effects/risk that must be justified with long-term benefit.

Thanks to ...

Clinical and Lab Team

Patients (Will Barkowski, artist)

Thanks to ...

UF Clinical team: Manuela Corti, PT, PhD Melissa Elder, MD Barbara Smith, PT, PhD Samantha Norman, MPH

UF Toxicology core: Kirsten Coleman, MBA

UF Preclinical team: Roland Herzog, PhD Denise Cloutier

UF Vector core: Nathalie Clément, PhD Brian Cleaver, PhD

Lovelance Institute: Janet Benson, PhD Gensheng Wang, PhD

UC Davis: Alice Tarantal, PhD

NIH Team: Carsten Bönnemann MD Andrew Arai, MD Nina Raben, PhD

Funding: NHLBI P01 HL59412, GTRP NICHD R01HD052682