Duchenne Research Overview: New and Emerging Therapies

Director, Pediatric Neuromuscular Clinic
Interim Division Chief, Pediatric Neurology
Geetanjali Rathore, MD
Duchenne Muscular Dystrophy

- Degenerative muscle disease
- Caused by a mutation in *DMD* gene - the largest human gene with 79 exons
- X-linked recessive disease with a prevalence of 1:5000 male births
- Progressive multi-system disease affecting
 - Skeletal muscle
 - Heart muscle
 - Smooth muscle
 - Cognitive function
 - Long term - lungs, bone, spine and ligaments
Dystrophin

- DMD gene encodes for a protein dystrophin
Impact of loss of dystrophin

- Membrane instability
- Calcium infiltration
- Inflammation
- Oxygen deprivation
- Fibrosis
- Muscle cell death
Diagnosing DMD

Clinical suspicion of DMD

CK level determination

High levels*

Normal values → DMD is ruled out

Diagnostic suspicion:

Deletion/duplication detected (MLPA)

Mutation detected (deletion/duplication)

Gene sequencing***

Mutation detected

DMD confirmed

Diagnostic confirmation:

Muscle biopsy

Alternative diagnoses to be considered

**

Management of DMD

• 1843- first described
• 1980’s- genetic cause identified
• 1988- Prednisone shown to be effective
• 2000’s – exon skipping
 - gene editing
 - synthetic steroids
 - anti-oxidant therapies
• Last decade - leaps and bounds
Patient Focused Multidisciplinary Care
Potential Targets for Duchenne Therapy

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis

- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis

- Dystrophin Restoration/Replacement
- Stem Cells
- Traditional Cardiac Drugs

- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Muscle Growth and Protection
- Myostatin Inhibition
- Follicostatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

Treating Duchenne
What is a Clinical Trial?

• A trial is a scientific study/experiment
• Potential therapy, not a therapy
• Risks and benefits
• IRB

What does FDA approved mean?

• FDA experts review the results of laboratory, animal, and human clinical testing done by manufacturers.
• FDA approval means the benefits of the product outweigh the known risks for the intended use
Study Types

–Pre-clinical: lab and animal studies
–Phase I: First in humans
 - Small n, dosing range, safety, side effects
–Phase II: Assess dose requirements and toxicity

 Assess efficacy
–Phase III: Randomized control placebo trial
 - Ultimate safety, efficacy and dosage of drugs
 - Compared to current gold standard or placebo
–Phase IV: Post-Marketing; monitor long term effects
Timeline of Studies

Stages of Clinical Trials

Preclinical → Phase 1 → Phase 2 → Phase 3 → Phase 4

- Preclinical: several years
- Phase 1: months
- Phase 2: months to years
- Phase 3: years to decades
- Phase 4: ongoing

© State of New South Wales (Cancer Institute NSW)
Looking at Treatment Options

• What is the drug name?
• Approved?
• Side effects?
• What stage of trial?
• Inclusion/exclusion Criteria?
• Informed consent--
 ▪ Ensure you understand the study– ask questions
 ▪ What is the timeline for visits?
 ▪ How is reimbursement being handled?
 ▪ Average length of a study visit?
Clinical Trials in Duchenne

Dystrophin Restoration/Replacement

Exon-Skipping
Gene Therapy
CRISPR
Stop-Codon Readthrough

Steroid Replacement

Anti-Fibrotics
Inflammation & Fibrosis

Calcium Regulation
Ryanodine Receptors
Calcium Homeostasis

Muscle Growth and Protection
Myostatin Inhibition
Follistatin Upregulation via Gene Therapy
Selective Androgen Receptor Modulators
Utrophin Upregulation

Cardiac
Blood Flow
Mitochondria

Mitochondrial Biogenesis
nNOS Upregulation
Mitochondrial Enhancers

Stem Cells
Traditional Cardiac Drugs
Dystrophin Restoration and Replacement

Exon Skipping - skip over the missing/defective part of the gene
Ambulatory, on steroids, mutation amendable
Exon Skipping

- Exon 51- exondys 51- 9/2016
- Exon 45 /53: Sarepta –ESSENCE (phase II/III)
- Casimersen/ Golodirsen – (phase III)
- Exon 53: **NS Pharma** (Phase II extension study)- completed
- Exon 51: **WAVE Life Sciences** (Phase II/III)
Dystrophin Restoration and Replacement

Stop Codon Read-through
- Ataluren (Translarna): PTC Therapeutics
- Makes ribosome less sensitive to stop codon
- Ignore the missing/defective part of the gene
- Continue to make protein
- Phase III extension study
- not FDA approved yet
Gene Therapies

- AAV(rh74) virus to deliver micro- or mini-dystrophins into human DNA
- Exon 18-58 (70%)
- Single IV administration
- re-dosing?

Dystrophin Restoration and Replacement
Dystrophin Restoration and Replacement

Micro/Mini-dystrophin
- Nationwide Children’s Hospital / Sarepta
 - Muscle specific
 - Doesn’t cross blood brain barrier
 - First trial finished dosing
 - Second trial has begun dosing
- **Ignite DMD** Solid Biosciences (Phase I/II, Micro-dystrophin)
- Pfizer (Phase I, Mini-dystrophin)
Surrogate Gene Therapy

-GALGT2 – Nationwide Children’s Hospital
 - Also delivered via AAV
 - Upregulate dystroglycan-binding proteins
 - Phase I/II
 - 4 years and older
 - ambulatory
 - steroids >12wk
 - IV infusion
 - Recruiting
Duplication Skipping

- Exon 2 Duplication Strategy – Nationwide Children’s Hospital

 - Preclinical
 - Only study looking at duplications
 - Specific to duplications in exon 2
 - Duplications account for 10–15%- exon 2 MC
 - Induce exon skipping by the use of a virus carrier
 - Copies of a modified small nuclear RNA targeted to exon 2
 - Alternative splicing – increases functional dystrophin
 - Uses CRISPR/Cas9 system
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrphin Upregulation
- Stem Cells
- Stem Cells
- Traditional Cardiac Drugs
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

Treating Duchenne

Muscle Growth and Protection
Muscle Growth and Regeneration

Biglycan: Tivorsan Pharma
- Preclinical
- Biglycan increases the expression of utropin
- Similar to dystrophin- partially compensate for the absence of dystrophin.

Anti-myostatin: Roche
- Phase II/III
- 6-11yo, ambulatory, steroids
- Myostatin inhibitor
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis
- Dystrophin Restoration/Replacement
- Stem Cells
- Traditional Cardiac Drugs
- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

Treating Duchenne
Anti-inflammatory

Edasalonexent: Catabasis
- Phase III, 4-7yo, ambulatory, steroid naïve
- NFkB inhibitor, anti-fibrotic
- Oral

Vamorolone: ReveraGen
- Phase II, 4-7yo, ambulatory, steroid naïve
- Synthetic (Dissociative) steroid
Anti-inflammatory

Givinostat: Italfarmaco - Phase III, >6yo, ambulatory, steroids >6mo
- HDAC enzyme Inhibitor
- HDAC inhibit DNA function – DMD- Higher levels – prevent muscle regeneration

MK1411: Mallinckrodt - Phase II, 4-8yo, steroid naive
- Synthetic ATCH

Pamrevlumab: Fibrogen - Phase II
 - Antibody to CTGF– prevents fibrosis
Clinical Trials in Duchenne

Exon-Skipping
Gene Therapy
CRISPR/Cas9
Stop-Codon Readthrough

Steroid Replacement

Anti-Fibrotics

Inflammation & Fibrosis
Calcium Regulation
Ryanodine Receptors
Calcium Homeostasis

Dystrophin Restoration /Replacement

Stem Cells
Traditional Cardiac Drugs

Cardiac

Blood Flow
Mitochondria

nNOS Upregulation
Mitochondrial Biogenesis
Mitochondrial Enhancers

Myostatin Inhibition
Follistatin Upregulation via Gene Therapy
Selective Androgen Receptor Modulators
Utrophin Upregulation

Muscle Growth and Protection
Mitochondrial function

Raxone (Idebenone): Phase III
- SIDELOS/ DELOS
- Steroid naïve complete, Seeking FDA review

Epicatechin: Cardero Therapeutics - Phase II
 - Mitochondrial growth/ regeneration of muscle cells
 - Non ambulatory

MTB-1: Astellas Pharma (Pre-clinical)
 - Selective gene regulator
 - Improve mitochondrial function
Questions?
Thank you!