Duchenne Research Overview: The landscape and the opportunities

Director of Research and Clinical Innovation
Eric Camino, PhD
Duchenne muscular dystrophy

• Caused by a mutation in *DMD* gene → Absence of dystrophin protein → muscle deterioration and weakness
• X-linked recessive disease with a prevalence of 1:5000 male births
• Progressive multi-system disease affecting:
 – Heart
 – Skeletal muscle
 – Smooth muscle
 – Bone
 – Cognitive function
Genetics

- *DMD* is the largest gene in the human genome
- 79 exons / ~2.5 Million base pairs
- Cloned in 1987

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon deletions</td>
<td>65%</td>
</tr>
<tr>
<td>Exon duplications</td>
<td>10%</td>
</tr>
<tr>
<td>Nonsense and other small changes</td>
<td>25%</td>
</tr>
</tbody>
</table>
Impact of loss of dystrophin

- Membrane instability
- Calcium infiltration
- Inflammation
- Oxygen deprivation
- Fibrosis
- Muscle cell death
• Patient focused multi-disciplinary approach
• Standard of care:
 – Glucocorticoid
• No Cure
What is a Clinical Trial?

• A trial is an experiment, not a therapy
• Risks and benefits
 – Data Safety Monitoring Boards (DSMB)
 – May assess safety and data during the trial
• Important to listen to pay attention to the informed consent/assent
 – Ask questions!
 – Ensure you understand the study
 – What is the timeline for visits?
 – How is reimbursement being handled?
 – Average length of a study visit?
Study Types

– Pre-clinical: lab and animal studies
– Phase I: First in humans; assess safety (mechanistic, usually in healthy volunteers, dosing, small n)
– Phase IIa: Assess dose requirements and toxicity
– Phase IIb: Assess efficacy; “Pivotal”
 • Phase IIa and IIb can be combined
Study Types

– **Phase III**: Classical randomized control placebo trial 1000-3000 subjects
 – In rare disease, this number can be much smaller
– **Phase IV**: Post-Marketing; monitor long term effects
<table>
<thead>
<tr>
<th>Drug/Procedure</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase I/II</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen) [Sarepta]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Emflaza [PTC Therapeutics]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Spironolactone & Eplerenone [Ohio State University]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Translarna (Ataluren) [PTC Therapeutics]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Givinostat [Italfarma]</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raxone (idebenone) [Santhera]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053 [Sarepta]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG6206 [Roche]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004) [Catabasis]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamorolone (VBP15) [Reveragen]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pamrevlumab (FG-3019) [Fibrogen]</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epicatechin</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01 [NS Pharma]</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNK-1411 Cosyntropin Acetate [Mallinckrodt]*</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping [WAVE]*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myoblast Transplantation [Chu De Quebec]</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exxon Skipping 53 [Daichi - Sankyo]***</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nationwide Micro-Dystrophin Gene Transfer [Nationwide...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nationwide GaGT2 Gene Therapy [Nationwide Children’s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy [Pfizer]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Transfer [Solid]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rimeporide [EspeRare]**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>AT-300 [Akashi]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nationwide Exon 2 Skipping for Duplication 2 [Nationwide...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Tamoxifen** [University of Geneva]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>MA-0211.MTB-1 [Mitobridge/Astellas]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

**Clinical Trials Listed with at least one company.”
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics

- Inflammation & Fibrosis

- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis

- Dystrophin Restoration /Replacement

- Stem Cells
- Traditional Cardiac Drugs

- Cardiac
- Blood Flow
- Mitochondria

- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Muscle Growth and Protection
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

Parent Project Muscular Dystrophy | EndDuchenne.org
Dystrophin Restoration and Replacement

Exon Skipping (skip over the missing/defective part of the gene)

Exon 45 and 53: **Sarepta Essence** (7-13yo, ambulatory, steroids >6mo)
 Casimersen and Golodirsen (Filed for AA)

Exon 53: **NS Pharma** (Phase II extension study)
 NS-065/NCNP-01

Exon 51: **WAVE Life Sciences** (Phase II/III, 5-18yo)
 WVE-210201
Dystrophin Restoration and Replacement

Stop Codon Read-through (ignore the missing/defective part of the gene)

Ataluren (Translarna): **PTC Therapeutics**
(Phase III extension study, ≥5yo, ambulatory, steroids ≥12mo, non-sense mutation)

Currently approved by EMA not FDA
Gene Therapies

- AAV virus to deliver micro- or mini-dystrophins
- Single IV administration
- Effect is thought to last ~10 years
- Cannot be repeated at this time
 - Working to avoid the formation of antibodies to the virus
 - Goal – re-dosing
Gene Therapy

Micro-dystrophin: Nationwide Children’s Hospital / Sarepta
- Exons 18-58
- Muscle specific
 - Doesn’t cross blood brain barrier
- First trial finished dosing
- Second trial has begun dosing
Gene Therapy

SGT-001: Ignite DMD Solid Biosciences
(Phase I/II, Micro-dystrophin)
- Steroids >24wks
- 4-17 years
- Recruiting

- **PF-06939926: Pfizer**
(Phase I, Mini-dystrophin)
- 5-12 years, ambulatory, steroids >6mo
- Recruiting by invitation
Gene Therapy

GALGT2 – Nationwide Children’s Hospital
(Phase I/IIa, rAAVrh74.MCK.GALGT2)
 – 4 years and older, ambulatory, steroids >12wk
 – Recruiting
 – Upregulate dystroglycan-binding proteins

Exon 2 Duplication Strategy – Nationwide Children’s Hospital
 – Preclinical
 – Only study looking at duplications
 – Specific to duplications in exon 2
Clinical Trials in Duchenne

Treating Duchenne

Muscle Growth and Protection

- Dystrophin Restoration/Replacement
- Steroid Replacement
- Anti-Fibrotics
- Calcium Regulation
- Ryanodine Receptors
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy

- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Cardiac
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Stem Cells
- Traditional Cardiac Drugs
- Calcium Homeostasis
- Selective Androgen Receptor Modulators
- Urotphin Upregulation

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Muscle Growth and Regeneration

Biglycan: **Tivorsan Pharma** (pre-clinical)
 - TVN-102

Anti-myostatin: **Roche** (Phase II/III, 6-11yo, ambulatory, steroids)
 - RO7239361
 - Myostatin inhibitor
Edasalonexent: **Catabasis** (Phase III, 4-7yo, ambulatory, steroid naïve)
 – NFkB inhibitor, anti-fibrotic

Vamorolone: **ReveraGen** (Phase 2b, 4-7yo, ambulatory, steroid naïve)
 – Dissociative steroid
Anti-inflammatory

Givinostat: **Italfarmaco** (Phase III, >6yo, ambulatory, steroids >6mo)
HDAC Inhibitor

MK1411: **Mallinckrodt** (Phase II, 4-8yo, steroid naive)
Synthetic ATCH

Pamrevlumab: **Fibrogen** (Phase II)
Antibody to CTGF
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Inflammation & Fibrosis
- Anti-Fibrotics
- Ryanodine Receptors
- Calcium Homeostasis
- Calcium Regulation
- Dystrophin Restoration /Replacement
- Stem Cells
- Cardiac
- Traditional Cardiac Drugs
- Blood Flow
- Mitochondria
- Stem Cells
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

Treating Duchenne

Muscle Growth and Protection
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis

- Dystrophin Restoration/Replacement

- Cardiac
 - Blood Flow
 - Mitochondria
 - nNOS Upregulation
 - Mitochondrial Biogenesis
 - Mitochondrial Enhancers

- Muscle Growth and Protection
 - Stem Cells
 - Myostatin Inhibition
 - Follistatin Upregulation via Gene Therapy
 - Selective Androgen Receptor Modulators
 - Utrophin Upregulation

- Traditional Cardiac Drugs

- Anti-Fibrotics

TREATING DUCHENNE

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Mitochondria

Raxone (Idebenone): **Santhera** (Phase III, >10yo, >12mos steroids)
 - Preservation of respiratory function
 - Delos Trial
 • Steroid naïve complete, Seeking FDA review

Epicatechin: **Cardero Therapeutics** (Phase II)
 - Mitochondrial growth
 - Reviewing results

MTB-1: **Astellas Pharma** (Pre-clinical)
 - Improved mitochondrial function
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exondys 51 (Eteplirsen) [Sarepta]</td>
<td></td>
</tr>
<tr>
<td>Emflaza [PTC Therapeutics]</td>
<td></td>
</tr>
<tr>
<td>Spironolactone & Eplerenone [Ohio State University]</td>
<td></td>
</tr>
<tr>
<td>Translarna (Ataluren) [PTC Therapeutics]</td>
<td></td>
</tr>
<tr>
<td>Givinostat [Italfarmaco]</td>
<td></td>
</tr>
<tr>
<td>Raxone (Idebenone) [Santhera]</td>
<td></td>
</tr>
<tr>
<td>SRP-4045/SRP-4053 [Sarepta]</td>
<td></td>
</tr>
<tr>
<td>RG6206 [Roche]</td>
<td></td>
</tr>
<tr>
<td>Edasalonexent (CAT-1004) [Catabasis]</td>
<td></td>
</tr>
<tr>
<td>Vamorolone (VBP15) [R reveragen]</td>
<td></td>
</tr>
<tr>
<td>Pamrevlumab (FG-3019) [Fibrogen]</td>
<td></td>
</tr>
<tr>
<td>Epicatechin</td>
<td></td>
</tr>
<tr>
<td>NS-065/NCNP-01 [NS Pharma]</td>
<td></td>
</tr>
<tr>
<td>MNK-1411 Cosyntropin Acetate [Mallinckrodt]</td>
<td></td>
</tr>
<tr>
<td>Follistatin Gene Transfer [Nationwide Children’s]</td>
<td></td>
</tr>
<tr>
<td>WVE-210201 Exon 51 Skipping [WAVE]</td>
<td></td>
</tr>
<tr>
<td>Myoblast Transplantation [Chu De Quebec]</td>
<td></td>
</tr>
<tr>
<td>Exon Skipping 53 [Daichi - Sankyo]</td>
<td></td>
</tr>
<tr>
<td>Nationwide Micro-Dystrophin Gene Transfer [Nationwide...</td>
<td></td>
</tr>
<tr>
<td>Nationwide GaIGT2 Gene Therapy [Nationwide Children’s]</td>
<td></td>
</tr>
<tr>
<td>PF-06939926 Mini-Dystrophin Gene Therapy [Pfizer]</td>
<td></td>
</tr>
<tr>
<td>SGT-001 Micro-Dystrophin Gene Transfer [Solid]</td>
<td></td>
</tr>
<tr>
<td>Rimeporide [EspeRare]</td>
<td></td>
</tr>
<tr>
<td>AT-300 [Akashi]</td>
<td></td>
</tr>
<tr>
<td>Nationwide Exon 2 Skipping for Duplication 2 [Nationwide...</td>
<td></td>
</tr>
<tr>
<td>Tamoxifen** [University of Geneva]</td>
<td></td>
</tr>
<tr>
<td>MA-0211.MTB-1 [Mitobridge/Astellas]</td>
<td></td>
</tr>
</tbody>
</table>
Thank you!
What does dystrophin do?
Muscle Growth and Regeneration

• Myostatin Inhibition
 – Domagrozumab
 • Pfizer, Phase 2
 • STUDY TERMINATED

 – BMS 986089 (now Roche)
 • BMS/Roche, Phase 1
 • 6-11yo, ambulatory, steroids >6mos
Reading frame

Normal gene – THE FAT CAT ATE THE BIG RED RAT = Full length dystrophin

In-frame mutation – THE FAT CAT ATE THE **BIG RED** MAD RAT = THE FAT CAT ATE THE MAD RAT = BMD

Out-of-frame mutation – THE FAT CAT ATE THE **BIG RED** MAD RAT = THE FAT CAT ATE THE BIE DMA DRA T = DMD

Exon-skipping – THE FAT CAT ATE THE **b**ie **d** MA DRA T = THE FAT CAT ATE THE MAD RAT