Duchenne Research Overview: The landscape and the opportunities

PPMD President Pat Furlong
Duchenne

- Largest gene & protein in the human genome
- 2.4 Million base pairs/79 Exons
- **Loss of Dystrophin**

- 60-70% Deletions
- 10% Duplications
- 10-15% point mutations and other small changes

Multi-system Disease:
- Skeletal Muscle
- Heart
- Bone
- Smooth Muscle
- Cognitive Function
Due to a genetic mutation, the dystrophin protein is missing or not functional in Duchenne.
What does dystrophin do?
What happens when dystrophin is missing?

- Calcium
- Free radicals
- Inflammation
- Oxygen deprivation
- Fibrosis (scarring)
- Muscle cell death

Creatine kinase (CK)
What is a Clinical Trial?

• A trial is an experiment, not a therapy
• Risks and benefits
 – Data Safety Monitoring Boards (DSMB)
 – May assess safety and data during the trial
• Important to listen to pay attention to the informed consent/assent
Study Types

• Multi-Phase Clinical Trials
 – Pre-clinical
 • lab and animal studies
 – Phase I:
 • First in humans (mechanistic, usually in healthy volunteers, dosing, small n)
 • assess safety
 – Phase IIa:
 • Assess dose requirements
 • IIa and IIb can be a little blurry…..
Study Types

– Phase IIb
 • Assess efficacy; “Pivotal”
 • can combine a and b, testing both efficacy and toxicity
 • larger than phase I
– Phase III
 • Classical randomized control placebo trial 1000-3000 subjects
 – In rare disease, this number can be much smaller
– Phase IV
 • Post-Marketing
 • monitor long term effects
Clinical Trials in Duchenne

[Diagram showing various treatment methods involving Dystrophin Restoration/Replacement, treating Duchenne, muscle growth and protection, calcium regulation, inflammation & fibrosis, steroid replacement, anti-fibrotics, cardipathy, blood flow, mitochondrial biogenesis, and nNOS upregulation.]

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Urotphin Upregulation
- Stem Cells
- Traditional Cardiac Drugs
- Mitochondrial Enhancers
- nNOS Upregulation

- Cardiac
- Blood Flow
- Mitochondria

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Knowing your genotype deletions can shift meaning of sequence

• Insertions/deletions may place sequence “out of frame” if not a multiple of 3
• Example: THE BIG RED DOG SAT AND RAN”
• “THE BIG RED DOG SAN NDR AN”
 – (nonsensical)
• “THE BIG RED DOG RAN”
 – Shorter, but a functional sentence
DMD- single base mutations can stop protein synthesis early

• Nonsense mutations (also called stop-gain)
 – UAA, UAG, UGA
 – Example:
 – “THE BIG RED DOG SAT AND RAN”
 – THE BIG RED DOG SAT END
Dystrophin Restoration and Replacement

- Exon Skipping (skip over the missing/defective part of the gene)
 - Exon 45 and 53
 - (Golodirsen, Casimersen)
 - **Essence (Sarepta)**
 - 7-13yo, ambulatory, steroids >6mos
 - Exon 53
 - **NS Pharma NS-065/NCNP-01**
 - 4-9yo, ambulatory, steroids >6mos
- WAVE Life Sciences
 - Exon 51 WVE-210201
 - 5-18 years, recruiting
DMD- single base mutations can stop protein synthesis early

• Nonsense mutations (also called stop-gain)
 – UAA, UAG, UGA
 – Example:
 – “THE BIG RED DOG SAT AND RAN”
 – THE BIG RED DOG SAT END
Dystrophin Restoration and Replacement

• Stop Codon Read-through (Ignore the missing/defective Stop signal)
 – Translarna (PTC)
 • EMA: Approval
 • Phase 3 extension study now
 – >5, ambulatory, steroids >12 mos
Gene Therapies

• All use serotypes of the AAV virus to deliver microdystrophins with the “business ends” of the dystrophin
• Studies will determine the most efficient microdystrophin
• Effect is thought to last ~10 years
• Cannot be repeated at this time
 – Working to avoid the formation of antibodies to the virus
 – Goal – re-dosing
Alternative Dystrophin Forms as Transgenes

Modified from Okada and Takeda, Viral Gene Therapy, intechopen.com
Gene Therapy

• Microdystrophin
 – Nationwide Children’s Hospital
 – Exons 18-58
 – Muscle specific
 • Doesn’t cross blood brain barrier
 – Ages
 • 6 patients, 4 -7 years
 – 4 patients have been dosed
Gene Therapies

• SGT-001
 – Solid GT
 – Micro-dystrophin
 – 4-17 years
 – Recruiting

• PF-06939926
 – Pfizer
 – Mini-dystrophin
 – 5-12 years
 – recruiting
Gene Therapy

- GALGT2 - rAAVrh74.MCK.GALGT2
 - 4 years and older
 - recruiting

- Exon 2 Duplication Strategy
 - Preclinical
 - Nationwide Children’s Hospital
 - Only study looking at duplications
 - Specific only to duplications in exon 2
 - Pre-clinical
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics
- Inflammation & Fibrosis
- Calcium Regulation
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy

- Dystrophin Restoration/Replacement
- Stem Cells
- Traditional Cardiac Drugs

- Cardiac
- Blood Flow
- Mitochondria

- Muscle Growth and Protection
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers
- Selective Androgen Receptor Modulators
- Utrophin Upregulation

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHEENNE.ORG
Muscle Growth and Regeneration

– Biglycan (TVN-102)
 • Tivorsan Pharma
 • Pre-clinical
Muscle Growth and Regeneration

• Myostatin Inhibition

 – Domagrozumab
 • Pfizer, Phase 2
 • STUDY TERMINATED

 – BMS 986089 (now Roche)
 • BMS/Roche, Phase 1, not enrolling
 • 6-11yo, ambulatory, steroids >6mos
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough

- Steroid Replacement
- Anti-Fibrotics

- Inflammation & Fibrosis

- Calcium Regulation

- Ryanodine Receptors
- Calcium Homeostasis

- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy

- Dystrophin Restoration/Replacement

- Stem Cells
- Traditional Cardiac Drugs

- Cardiac
- Blood Flow

- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

- Muscle Growth and Protection

- Selective Androgen Receptor Modulators
- Utrophin Upregulation

- PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Anti-inflammatory

- Givinostat
 - Italfarmaco
 - HDAC inhibitor
 - Phase 3, recruiting
 - >6yo, ambulatory, steroids >6mos
Anti-inflammatory

• Edasalonexent (CAT-1004)
 – Catabasis
 – Phase 2a, recruiting
 – NFkB inhibitor, anti-fibrotic
 – 4-7yo, ambulatory, steroid naïve

• Vamorolone
 – ReveraGen
 – Phase 2, recruiting
 – Steroid alternative
 – 4-<6yo, ambulatory, steroid naive
Anti-inflammatory

- **MK1411**
 - Mallinckrodt
 - Pre-clinical

- **Pamrevlumab**
 - FibroGen
 - FG-3019, anti-fibrotic
 - Antibody to connective tissue growth factor
 - Phase 2 (not recruiting)
 - >12yo, non-ambulatory, steroids >6mos
Clinical Trials in Duchenne

- Exon-Skipping
- Gene Therapy
- CRISPR/Cas9
- Stop-Codon Readthrough
- Steroid Replacement
- Anti-Fibrotics
- Ryanodine Receptors
- Calcium Homeostasis
- Myostatin Inhibition
- Follistatin Upregulation via Gene Therapy
- Selective Androgen Receptor Modulators
- Utrophin Upregulation
- Inflammation & Fibrosis
- Stem Cells
- Traditional Cardiac Drugs
- Blood Flow
- Mitochondria
- nNOS Upregulation
- Mitochondrial Biogenesis
- Mitochondrial Enhancers

Treating Duchenne

- Dystrophin Restoration/Replacement
- Cardiac
- Calcium Regulation
- Muscle Growth and Protection

PARENT PROJECT MUSCULAR DYSTROPHY | ENDDUCHENNE.ORG
Cardiac Therapies

• CoQ10 and Lisinopril
 – Completed, under evaluation
• Spironolactone v.s. Eplerenone
 – completed
• Cap-1002
 – Capricor; HOPE -2
 – 10 years and older
 – Recruiting
Mitochondria

• Epicatechin
 – Cardero Therapeutics
 – Mitochondrial growth

• Raxone (Idebenone)
 – Santhera
 – Preservation of respiratory function
 – Delos Trial
 • Steroid naïve complete, Seeking FDA review
 – Sideros Trial
 • Phase 3
 • >10yo, steroids >12 mos, ambulatory or non-ambulatory
Mitochondria

• MTB-1
 – Mitobridge and Astellas Pharma
 – Improved mitochondrial function
 – Pre-clinical
Thank you!