Muscle-specific CRISPR/Cas9 dystrophin gene editing

Jeffrey S. Chamberlain, Ph.D.
McCaw Endowed Chair in Muscular Dystrophy
Director, Wellstone Muscular Dystrophy Research Center
Depts. of Neurology, Medicine and Biochemistry
University of Washington School of Medicine
Seattle, WA USA

Disclosures: JSC is chair of Solid Biosciences’ scientific advisory board
Gene Therapy for DMD/BMD

- **Goal:** Develop methods to *replace* or *repair* dystrophin gene

- **Gene replacement:** AAV/micro-dystrophin

- **Gene editing:** CRISPR/Cas9
 - Must be adapted for each mutation
 - Can lead to more functional dystrophins – *Depending on the mutation*
 - Best way to deliver remains uncertain

- Gene replacement with micro-dystrophins – in human trials
- Gene editing with CRISPR/Cas9 - future potential?
Pros and cons of micro-dystrophins

- Clinical trials of systemic AAV/µDys delivery have begun by 3 groups (Solid Biosciences, Jerry Mendell/Sarepta, Pfizer)

- Micro-dystrophins can be delivered bodywide with AAV; One treatment lasts for years; Highly protective against muscle wasting; One vector for all patients

- However, micro-Dys is about one-third the size of the full protein

- Not fully functional, size constraints limit delivery all domains of the protein

- **Gene editing could produce larger and more functional dystrophins**
Potential for gene editing in DMD?

CRISPR/Cas9 mediated gene editing:

- Dystrophin gene editing: Produce a dystrophin missing parts of the normal protein
 - Mutation modification - to make a highly functional ‘mini-dystrophin’
 - Some mutations can generate sub-optimal dystrophins (stability/function)
- Dystrophin gene repair: Requires insertion of a new piece of DNA
 - Potential to make completely normal dystrophin (M. Spencer)

Our focus:

- Restrict Cas9 nuclease expression to muscle cells
 - Prevent gene editing in non-muscle and dividing cells
 - Minimize immune response vs bacterial Cas9
 - Prevent induction of cancer from ‘off-targeting’
- Develop editing/repair methods for multiple types of mutations
Making proteins only in muscle using MCK

- The M-CK gene is only active in muscle
- Inactive in dividing immune and cancerous cells
- Powerful on/off switches developed by Steve Hauschka (U Washington) being used in all 3 µDys trials
 - CK6/ MHCK7/ CK8/ tMCK etc

- Adapt to CRISPR/Cas9?
Injection of AAV6:CK8-Cas9 into mdx4cv muscle

Exon skipping (2 exons)
Gene repair
none

Dystrophin Staining

Up to 25% normal dystrophin levels (variable)

Niclas Bengtsson et al, Nat Comm 2017
Dystrophin production following *bodywide* delivery of AAV-CK8-CRISPR/Cas9

Removal of 2 exons: <10% normal amounts of dystrophin
AAV-mediated dystrophin expression: \(\muDys \) vs CRISPR/Cas9

- canine DMD model, removal of 3 or 4 exons

AAV/CRISPR-Cas9 works similarly in the canine model of DMD
Muscle-specific dystrophin gene editing

- No Gene editing in non-muscle cells
- Production of large dystrophins (depends on mutation)
- Works moderately well in mice and large animals

Room for improvement:
- Muscle stem cell targeting is inefficient (i.e. not permanent)

Safety concerns
- Editing methods are possibly linked to immune rejection (and cancer?)
- Problems with unwanted editing of other genes

Need to limit persistence of the gene editing machinery
- Short duration (non-AAV delivery methods are needed)

Ultimate goal is to improve the efficiency of complete gene repair
Wellstone Muscular Dystrophy Research Center - Seattle

Chamberlain Lab:
Niclas Bengtsson – Cas9
Hichem Tasfaout – Cas9
Julie Crudele - Immunology

U Washington:
Guy Odom
Steve Hauschka

Supported by The National Institutes of Health (NIAMS/NHLBI)
The Muscular Dystrophy Association (USA)
Solid Biosciences