VAMOROLONE: CLINICAL STAGE

FIRST DISSOCIATIVE STEROIDAL ANTI-INFLAMMATORY

Eric Hoffman, CEO ericphoffman@gmail.com
DMD NFkB danger signals – inflammation – myofiber damage

- Process present in DMD muscle from birth
- Shared with many chronic inflammatory states
- Target of corticosteroids (deflazacort, prednisone)
General mechanisms of action of glucocorticoids

- Inhibit inflammation
- Lessen myofiber damage
- Improve symptoms
- Corticosteroids work
General mechanisms of action of glucocorticoids

- Goal of vamorolone program:
 - Allow single GR/drug (benefit)
 - Inhibit double GR/drug (side effects)
NEW CHEMISTRY: FIRST-IN-CLASS

- A key change in the steroid backbone (9,11 bond)
- Binds receptors, but prevents dimerization
- Full dissociation of efficacy and side effects

Prednisone
Vamorolone
VAMOROLONE GOALS

- Retain anti-inflammatory efficacy
- Add additional new aspects of potential efficacy
 - Eplerenone activity (MR antagonist; aids heart)
 - Membrane stability (counteracts dystrophin-deficiency)
- Reduce drug-associated safety concerns (side effects)
Phase 2a Design = Open Label Dose Escalation

Phase 2a
VBP15-002

Phase 2a extension
VBP15-003

Long term extension
VBP15-LTE

4 to <7 years, never taken steroids
12 boys/group. 48 boys total

2 weeks on 6 months on drug 2 years on drug
2 weeks off

Dose group 1 = 0.25 mg/kg/day

Dose group 2 = 0.75 mg/kg/day

Dose group 3 = 2.0 mg/kg/day

Dose group 4 = 6.0 mg/kg/day

Patients on LTE can dose escalate
0.25 to 0.75 to 2.0 to 6.0 mg/kg/day
Phase 2a studies:
Phase 2a (VBP15-002)
Phase 2a extension (VBP15-003)
Long term extension (VBP15-LTE)

- **Study Chair:** Paula Clemens, University of Pittsburgh
- **Sponsor:** Eric Hoffman, ReveraGen
- **Coordinating center:** TRiNDS (CINRG), Andrea Smith
- **Recruitment sites:** CINRG sites
- **Patients:** 48 DMD 4 to <7 years, steroid naïve
- **Sample size calculations:** CINRG DNHS vs. CINRG prednisone trial
- **Design:** Broad dose range (0.25 – 6.0 mg/kg/day); 12 boys per dose group
 - 1/3 prednisone dose – 10-times prednisone dose in DMD
Outcome measures - Efficacy

- **Primary:** Time to stand
- **Secondary:**
 - 10 meter walk
 - 6 minute walk
 - 4 stair climb
 - NorthStar Ambulatory Assessment
 - Quantitative muscle testing

<table>
<thead>
<tr>
<th>Study Measurement</th>
<th>%CV Mean Intra-patient variance (precision)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Stand</td>
<td>62.0</td>
</tr>
<tr>
<td>Time 10 m Run/Walk</td>
<td>23.8</td>
</tr>
<tr>
<td>Time to Climb 4 Stairs</td>
<td>71.0</td>
</tr>
<tr>
<td>6 Minute Walk Test</td>
<td>19.5</td>
</tr>
<tr>
<td>NSAA</td>
<td>28.1</td>
</tr>
<tr>
<td>QMT Elbow Flexion</td>
<td>42.5</td>
</tr>
<tr>
<td>QMT Elbow Extension</td>
<td>45.0</td>
</tr>
<tr>
<td>QMT Knee Flexion</td>
<td>58.4</td>
</tr>
</tbody>
</table>

Four measures/patient in ~6 weeks
Primary clinical efficacy outcome – Mixed model repeated measure

Change from baseline at 12 weeks and 24 weeks

![Graph showing changes in Mean Velocity (m/s) from baseline to 12 weeks and 24 weeks for different doses of Vamorolone: 0.25 mg/kg/day, 0.75 mg/kg/day, 2.0 mg/kg/day, and 6.0 mg/kg/day. The graph indicates significant improvements in time to stand velocity at 24 weeks for 2.0 and 6.0 mg/kg/day doses with p-values of 0.02 and 0.04, respectively.](image-url)
Primary clinical efficacy outcome: Meets primary outcome
Comparison to CINRG Duchenne Natural History Study (DNHS)

Change from baseline at 12 weeks and 24 weeks

![Change in Mean Velocity (m/s) vs Time to Stand (velocity)](image-url)

- CINRG Natural History 4-<7 years DMD
- 0.25 mg/kg/day Vamorolone
- 0.75mg/kg/day Vamorolone
- 2.0 mg/kg/day Vamorolone
- 6.0 mg/kg/day Vamorolone

Baseline 12 weeks 24 weeks

P=0.04
Secondary clinical efficacy outcome:

Change from baseline at 12 weeks and 24 weeks

Time to Run/Walk (velocity)

Change in Mean Velocity (m/s)

Baseline 12 weeks 24 weeks

CINRG Natural History 4-<7 years DMD
0.25mg/kg/day Vamorolone
0.75 mg/kg/day Vamorolone
2.0 mg/kg/day Vamorolone
6.0 mg/kg/day Vamorolone

N=11
N=11
N=12
N=12
N=12
N=18
N=25

P=0.003
Secondary clinical efficacy outcome

Change from baseline at 12 weeks and 24 weeks

![6 Minute Walk Test Graph](image)

- **Baseline**: Meters change
- **12 weeks**: Meters change
- **24 weeks**: Meters change

- **0.25 mg/kg/day vamorolone**
- **0.75 mg/kg/day vamorolone**
- **2.0 mg/kg/day vamorolone**
- **6.0 mg/kg/day vamorolone**

N=10

N=11

N=12

P=0.003
Secondary clinical efficacy outcome

Change from baseline at 12 weeks and 24 weeks

North Star Ambulatory Assessment

- 0.25 mg/kg/day vamorolone
- 0.75 mg/kg/day vamorolone
- 2.0 mg/kg/day vamorolone
- 6.0 mg/kg/day vamorolone
Exploratory Efficacy Biomarkers

- **Serum creatine kinase**
 - Biomarker membrane stability
 - Reductions at 2.0 and 6.0 mg/kg

- **Steroid-responsive serum proteins**
 - Anti-inflammatory mechanism of action
 - 7 pre-specified inflammatory proteins
 - DMD, IBD, JDM, vasculitis
 - 6 of 7 show Vamorolone dose response

CK drops by ~30%
Safety – side effects

• **Clinical Safety** – Adverse events, serious adverse events

 • Adult volunteers – 2 weeks treatment – **safe to highest dose tested** – 20 mg/kg/day
 • DMD Phase IIa – 2 weeks treatment – **safe to highest dose tested** – 6 mg/kg/day
 • Phase IIa extension – 24 weeks treatment – **under analysis**
 • Long-term extension – 2 years treatment – **ongoing**

• **No dose-limiting safety concerns in adult volunteers or DMD**
Survey of DMD parents with children on prednisone/deflazacort Binghamton University – SUNY (n=50)

What side effects are of most concern?

- #1: Loss of bone density
 - 80% very concerned
- #2: Weight gain
 - 75% very concerned
- Tied #3: 50% very concerned
 - Stunting of growth
 - Delayed puberty
 - Suppressed immunity

Corticosteroid (prednisone, deflazacort) pharmacodynamic safety concerns
• **Pharmacodynamic Safety – Potential side effects**

 • **Adult volunteers – 2 weeks treatment**
 • Bone markers – no changes through 20 mg/kg/day
 • Insulin resistance – no changes through 20 mg/kg/day
 • Incidence of adrenal suppression – 0% 1, 3 mg/kg; 50% 9 mg/kg; 100% 20 mg/kg

 • **Phase IIa – 2 weeks treatment, 24 weeks treatment - DMD**
 • Bone markers – osteocalcin (bone formation) no decreases 24 weeks any dose
 • Insulin resistance – no increases 24 weeks any dose
 • Incidence of adrenal suppression – 18% 2 mg/kg; 60% 6 mg/kg at 2 weeks
Change in body mass index relative to baseline (to six months)

- 0.25 mg/kg
- 0.75 mg/kg
- 2.0 mg/kg
- 6.0 mg/kg
Prednisone
CINRG
0.75 mg/kg/day

Vamorolone
2.0 mg/kg

Vamorolone
6.0 mg/kg
PHASE 2A - CONCLUSIONS

- Efficacy at 24 weeks - 2.0 and 6.0 mg/kg/day
- Pharmacodynamic biomarkers
 - Creatine kinase levels reduced 2.0, 6.0 mg/kg/day up to 4 weeks
 - Improved safety relative to published studies of prednisone/deflazacort (Phase 1, Phase 2a)

- Phase 2a data consistent with 2.0, 6.0 mg/kg advancing to Phase 2b
PHASE 2B

- Study Chairs: Michela Guglieni (Newcastle University), Paula Clemens (University of Pittsburgh)
- Coordination: TRiNDS LLC, Newcastle University
- Design:
 - **Period 1: 24 weeks.** 50% DMD patients vamorolone (2 doses), 25% placebo, 25% prednisone
 - **Period 2: 24 weeks.** 100% patients vamorolone (2 doses)
 - 120 DMD boys, 4 to <7 years, not previously treated with steroids
 - **Visits:** Designed with DMD parent involvement, burden kept to minimum. ~1 visit per month
 - **Dosing:** Daily by mouth in morning at home
- **Info:** clinicaltrials.gov NCT03439670
SITES PHASE 2B: TRANCHE I NORTH AMERICA

<table>
<thead>
<tr>
<th>Tranche</th>
<th>Country</th>
<th>Institution</th>
<th>City, State</th>
<th>Site Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>University of Texas Southwestern Medical Center</td>
<td>Dallas, Texas</td>
<td>Diana Castro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of California Davis</td>
<td>Sacramento, California</td>
<td>Craig McDonald</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ann & Robert H. Lurie Children’s Hospital</td>
<td>Chicago, Illinois</td>
<td>Nancy Kuntz</td>
</tr>
<tr>
<td>I</td>
<td>US</td>
<td>Seattle Children’s Hospital</td>
<td>Seattle, Washington</td>
<td>Susan Apkon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCLA</td>
<td>Los Angeles, California</td>
<td>Perry Shieh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children's Hospital Colorado</td>
<td>Denver, Colorado</td>
<td>Michele Yang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nemours Children’s Hospital</td>
<td>Orlando, Florida</td>
<td>Rich Finkel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Richmond Children's Hospital</td>
<td>Richmond, Virginia</td>
<td>Amy Harper</td>
</tr>
<tr>
<td>CANADA</td>
<td>CANADA</td>
<td>Alberta Children's Hospital</td>
<td>Calgary, Alberta</td>
<td>Jean Mah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Children's Hospital of Eastern Ontario (CHEO)</td>
<td>Ottawa, Ontario</td>
<td>Hugh McMillan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BC Children's Hospital</td>
<td>Vancouver, British Columbia</td>
<td>Kathy Selby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Montreal Children's Hospital</td>
<td>Montreal, Quebec</td>
<td>Anne Marie Sbrocchi</td>
</tr>
<tr>
<td>SITES PHASE 2B</td>
<td>TRANCHE 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td></td>
<td>PHASE 2A SITES – THANKS!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal Hospital for Children</td>
<td>Glasgow, UK</td>
<td>Iain Horrocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alder Hey Children's Hospital</td>
<td>Liverpool, UK</td>
<td>Stefan Spinty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University College London</td>
<td>London, UK</td>
<td>Francesco Muntoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newcastle University</td>
<td>Newcastle, UK</td>
<td>Michela Guglieri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leeds Teaching Hospitals Trust</td>
<td>Leeds, UK</td>
<td>Anne-Marie Childs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISRAEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider Children's Medical Center</td>
<td>Tel Aviv, Israel</td>
<td>Yoram Nevo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal Children's Hospital</td>
<td>Melbourne, Australia</td>
<td>Monique Ryan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Children's Hospital at Westmead</td>
<td>Sydney, Australia</td>
<td>Richard Webster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEDEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen Silvia Children’s Hospital</td>
<td>Gothenburg, Sweden</td>
<td>Mar Tulinius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karolinska Institutet</td>
<td>Stockholm, Sweden</td>
<td>Thomas Sejersen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- **When will trials of older and younger DMD patients be carried out?**
 - There is a Pediatric Investigation Plan approved by the EMA for Vamorolone that plans trials for the complete pediatric age range (newborn to 18 years)
 - The next anticipated clinical trial of Vamorolone is in a broad age range (2-4 years, and 7-18 years) that we have planned to initiate in 2019

- **Why the 3-fold jump from 2.0 to 6.0? Why not try an intermediate dose, or higher than 6.0?**
 - The goal is to find therapeutic index (window); lowest efficacious dose, and highest safe dose
 - This is always challenging – the group felt that 3-fold was aggressive, but appropriate.
 - Regulators often accuse programs of not going high enough.
 - It is all a balance, and at the end of the day, patients are individuals and doses may need to be optimized
PROGRAM MADE POSSIBLE BY:
PARENTS, FOUNDATIONS, GOVERNMENTS

$40M in non-dilutive capital to date