Overview of Duchenne and Becker MD

Richard S. Finkel, M.D.
Neuromuscular Program
The Children’s Hospital of Philadelphia

Andrew Hoey, Ph.D.
Centre for Systems Biology
University of Southern Queensland, Australia
Roadmap

Topics
- Causes of DMD & BMD
- Consequences
- Care Considerations
- Cure

Process
- Identify the problems
- Innovation in science
- Investigation: therapy
- Improvement in care
Dystrophinopathies

- Classic Duchenne phenotype
- Becker phenotype
- Cardiac phenotype
- Exercise – Myalgias phenotype

Dystrophinopathies
Duchenne muscular dystrophy

- 1:3,500 boys
- Onset 2-4 years
 - delayed motor milestones: 42%
 - Abnormal gait: 30%
 - Speech delay and LD: 30%
- Proximal > Distal weakness
- Large Calves
- Wheelchair < 12 yrs
- Lifespan into 3rd decade
- Death from cardiac and respiratory failure
Duchenne Muscular Dystrophy Timeline

<table>
<thead>
<tr>
<th>YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-symptomatic Diagnosis</td>
</tr>
<tr>
<td>Making slow gains Plateau</td>
</tr>
<tr>
<td>Regression in leg function</td>
</tr>
<tr>
<td>Loss of ambulation by age 12</td>
</tr>
<tr>
<td>Regression in arm function</td>
</tr>
<tr>
<td>Spinal curvature Pulmonary Decline</td>
</tr>
<tr>
<td>Cardiac Decline Death</td>
</tr>
</tbody>
</table>
Management Issues

• Steroid Treatment
• Physical Therapy: contractures, mobility
• Nutrition: avoid obesity
• Annual influenza immunization
• Special educational needs
• Monitor and Treat:
 – Scoliosis → Orthopedic evaluation
 – Heart Failure
 – Decreased lung function, sleep apnea
Becker muscular dystrophy

- 1: 12,000 males
- Onset and course variable
- Proximal > Distal weakness
 - may be limited to quads
 - exercise-induced myalgias
 - walk for 15+ years on average
 - wheelchair > 16 yrs
 - lifespan variable (average = 40s)
 - death from heart failure
Genetic Basis of DMD & BMD

Gene mutation = error in DNA sequence
- DMD and BMD in **dystrophin gene**
- X-chromosome location; boys affected
- All ethnic groups
- 2/3 of mothers are “carriers”
- Location and type of mutation are important
Genetic Structure
The Dystrophin Gene

From: Aartsma-Rus et al, Muscle and Nerve, 2006; 34:135-144
• Boy with clinical features, elevated CK, (EMG+)
• **Molecular Genetic Testing** confirms dystrophin disorder
 – Duchenne: predicted by “nonsense” mutation (93%)
 – Becker: predicted by a “missense” mutation (98%)
 – Carrier testing: can be done in commercial labs now
• Multi-step DNA analysis
 – Look for big deletion 1st
 – Then look for small deletion, duplications, point mutations
• 2007: new gene chip for diagnosis available
Chemical Level

DNA

RNA

Amino acids

Protein
Abnormal Dystrophin Protein

• Gene mutation affects amino acid synthesis
• Results in abnormal dystrophin protein
 – Absent/unstable protein = DMD
 – Reduced amount = BMD
 – Shorter but stable protein = BMD
• Affects cell function
 – Mechanical stress
 – Signaling of complex processes in cell
 – Calcium accumulation in cell
Dystrophin DNA Mutations

- Entire gene deleted = rare
- Large mutation in the gene (spans 1+ exon)
 - deletion (72%, Leiden), “hot spot” at exons 44-53
 - duplication (7%), “hot spot” at exons 2-20
- Small scale change (< 1 exon) = 20%
 - Deletion
 - Insertion
 - Point mutation (13% are “premature stop”)

Important to genotype every DMD & BMD boy
Muscle Biopsy: dystrophic changes

Normal

Duchenne
Location of Dystrophin Protein

protein complex at edge of muscle fiber

Dystrophin

contractile elements
Immunohistochemistry and Western blot

Duchenne:
absent (<2%) dystrophin

Becker:
reduced amount of smaller protein

Carrier female:
half muscle fibers with absent dystrophin

Western Blot: band indicates amount and weight of dystrophin
A VICIOUS CYCLE

Lack of dystrophin → Calcium influx → Activation of enzymes → Inflammation & Cell death → Muscle replacement

Scarring
DYSTROPHIN DEFICIENT MUSCLE

Dystrophin-glycoprotein complex affected
Decreased membrane stability

Calcium influx

Mechanical activity

Membrane damage
Activation of proteases

Calcium overload

Secondary changes:
Altered gene transcription, Enzyme activation
Mitochondrial damage, Myofibril damage
Cell signalling disruption, Oxidative damage

Necrosis
Apoptosis

Inflammatory response
Mononuclear cell infiltration
Fibrosis
Organs

- Muscles
- Bones
- Heart
- Blood vessels
- Lungs
- Brain
- Gastrointestinal Tract
Thank You

- PPMD
- Patients and Parents