Overview: Current Clinical Trials

Kathryn Wagner, MD, PhD

June 19, 2015
Disclosures

• Consultant for SOLID, Fibrogen, aTYR
• Investigator in clinical trials for Sarepta, Biomarin, Akashi, Pfizer, ISIS
• Employee of Kennedy Krieger Institute
impossible
What is Clinical Research?

• Research with human volunteers (participants, subjects).
• Carefully conducted investigations to ultimately uncover better ways to treat, prevent, diagnose and understand human disease.
Types of Clinical Research

• Observational studies
 – Assess health outcomes in groups of participants
• Natural history studies
 – How does disease and health progress
• Prevention trials
 – Studies way to prevent disease in people who have never had the disease or prevent from returning (vaccine, medicine, lifestyle changes)
• Screening Trials
 – Test the best way to detect certain disease or health conditions
• Diagnostic Trials
 – Determine better tests or procedures for diagnosing a particular disease or condition
• Treatment Trials (or interventional study)
 – Tests new treatments, new combinations of drugs or new approaches to therapy to see whether safe and efficacious in a disease population
• Quality of life Trials
 – Measure ways to improve quality of life in people with chronic illness
Clinical Trials

Phase I: Assess Drug Safety and Tolerability

- Healthy volunteers then target population
- Limited number of people
- Pharmacokinetics (i.e. Absorption, metabolism, excretion)
- Dose escalation
- 70% of new drugs pass this phase
Clinical Trials cont.

• Phase II: Assess Drug efficacy (and further evaluate safety)
 – Randomized
 – Controlled
 – Surrogate outcome measures
 – Short term
 – Small numbers
 – 22% drugs which enter Phase II go forward
Clinical Trials cont.

- Phase III: Large scale RCT to confirm efficacy and safety in a larger population
 - Hundreds of patients
 - Randomized, placebo-controlled
 - Long-term
 - Outcome measures similar to real world (function, quality of life)
 - Defines packaging insert content and allow marketing
 - 55% of drugs that enter phase III are successful

Therefore ~8% of drugs that enter clinical trials are FDA approved
Randomization

• E.g. Assign 40 people randomly to 4 different treatment “arms”
 – Condition 1 = Wonderdrug 5%
 – Condition 2 = Wonderdrug 10%
 – Condition 3 = Wonderdrug 15%
 – Condition 4 = Placebo

• Assign each participant a unique participant number
• Use Randomizer algorithm to generate 1 set of 40 non-unique, unsorted numbers with a range from 1 to 4 (representing the condition numbers).
 – 3, 4, 4, 3, 2, 2, 4, 4, 1, 2, 2, 2, 1, 3, 3, 1, 4, 4, 2, 1, 3, 2, 1, 1, 3, 2, 3, 2, 4, 2, 2, 3, 3, 4, 2, 2, 1, 3, 4, 2
Control

• A comparison group that receives a placebo, another treatment, or no treatment at all.
• Does not have to be a 1:1 ratio to treatment (and frequently isn’t)
Members of a Study Team

• **Principal Investigator (PI).**
 – Usually a physician
 – May have co- or sub-PIs
 – Ultimately responsible for wellbeing of patients and good data collection

• **Clinical Trial Coordinator**
 – may be a nurse, doctor or other professional
 – Makes the trial run smooth operationally

• **Clinical Evaluator**
 – Physical therapist
 – Measures function

• **Nurse**
 – Collects urine/blood
 – Administers treatment
Screening

• Informed Consent

• Eligibility
 – Inclusion and Exclusion criteria
 – Age, gender, type and stage of disease, previous treatment history, other medical conditions, other medicines
 – Reproducibility
Outcome measures

- Measures that are meaningful to patient’s everyday lives
 - E.g. Longevity
 - E.g. Function
- Other Measures that known to correlate with meaningful measures (biomarkers)
 - E.g. 6 minute walk test
After the trial

• Information collected is studied
• Decision made whether to go forward with next phase
• Results often published in peer-reviewed journals
• Results specific to the individual participant are frequently not shared with the participant
• Continued access to the drug depends in part on the success of the trial
Why participate?

• Play an active role in research and improving the treatment of disease
• Receive regular and careful medical attention
• Gain access to new treatments before they are widely available*

* This may not occur

“To my surprise and appreciation, I found myself immersed in a medical system that overflowed with passion for its work... I was surrounded by doctors, surgeons, nurses and aides who were attentive and engaged. I found myself looking forward to each visit and the exchange of information and knowledge.”
Questions you want to ask

• Who is sponsoring the trial
• What is the participant burden
• What are the risks (of the treatment and of the studies)
• What is the degree of harm that could result
• What is the chance of harm occurring
• What will be billed to study versus patient
• What is the ratio of placebo to treatment
• Is there a commitment to an extension study
Treating Duchenne

- Stop-codon Readthrough
- Exon-Skipping
- Gene Therapy
- Functional replacement with other proteins
- Anti-fibrotics
- Inflammation & Fibrosis
- Steroid Replacements
- Calcium Regulators
- Ryanodine Receptor
- GsMTx4
- Muscle growth pathways
- Muscle Mass
- Stem Cells
- PDE5
- Blood Flow
- Cardiac
- Poloxymers
- Serca 2A
- Traditional cardiac drugs
<table>
<thead>
<tr>
<th>Drug Candidate</th>
<th>Sponsor</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase I/II</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translarna</td>
<td>PTC Therapeutics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT-1004</td>
<td>Catabasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catena</td>
<td>Santhera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drisapersen</td>
<td>Biomarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eplerenone</td>
<td>Nationwide Children’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eteplirsen</td>
<td>Sarepta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF-06252616</td>
<td>Pfizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follistatin/AAV</td>
<td>Nationwide Children’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT-100</td>
<td>Akashi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isofen</td>
<td>PPMD Onlus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catena</td>
<td>Santhera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 044</td>
<td>Biomarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 045</td>
<td>Biomarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMN 053</td>
<td>Biomarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4045</td>
<td>Sarepta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP-4053</td>
<td>Sarepta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMT C1100</td>
<td>Summit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGCg</td>
<td>Charite University, Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tadalafil</td>
<td>Eli Lilly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Target</td>
<td>Goal</td>
<td>Company/Investigator</td>
<td>Time Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBD peptide</td>
<td>Blocks Ikkb in the NF-kB pathway</td>
<td>Reduce inflammation, boost muscle growth</td>
<td>TheraLogics/Denis Guttridge</td>
<td>Need to complete IND-enabling toxicology; Seeking partner for trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALGT2 gene transfer</td>
<td>Muscle membrane-extracellular matrix interface</td>
<td>Decrease muscle injury</td>
<td>Nationwide Children’s/ Paul Martin an Kevin Flanigan</td>
<td>Need to complete GMP manufacturing run; Phase I in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biglycan</td>
<td>Muscle membrane-extracellular matrix</td>
<td>Decrease muscle injury</td>
<td>Tivorsan/Justin Fallon</td>
<td>Phase I in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBP-15</td>
<td>NF-kB pathway</td>
<td>Block inflammation and stabilize membrane</td>
<td>ReveraGen</td>
<td>Phase I started in 2015; Phase 2 in late 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FG-3019</td>
<td>Connective tissue growth factor</td>
<td>Reduce fibrosis</td>
<td>Fibrogen</td>
<td>Phase 2 in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT-1004</td>
<td>NF-kB pathway</td>
<td>Block inflammation</td>
<td>Catabasis</td>
<td>Phase I/II in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMO-8400</td>
<td>Toll-like receptors</td>
<td>Block inflammation</td>
<td>Indera</td>
<td>Phase I/II in 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epicatechin</td>
<td>Mitochondria</td>
<td>Improve energetics</td>
<td>Cardero/Craig McDonald</td>
<td>Phase I/II in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>Estrogen Receptor</td>
<td>Not Known</td>
<td>Lee Sweeney</td>
<td>Seeking clinical partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflazacort</td>
<td>Anti-Inflammatory</td>
<td>Extended Access Program for approval in US</td>
<td>Marathon</td>
<td>EAP in 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS-986089</td>
<td>Myostatin pathway</td>
<td>Increases muscle regeneration and decrease fibrosis</td>
<td>Bristol Myers Squibb</td>
<td>Phase I/II 2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Improve the Odds?

- 1 in 5000 compounds that enter preclinical testing proceed to human trials
- 1 of 12 drugs entering clinical trials is approved
- Cost of drug approved= $1.3B *(PharmaVoice, March 2012)*
- Drug development in this context no longer sustainable
TACT (TREAT-NMD Advisory committee for Therapeutics)

- TACT established in 2009 with volunteer experts from academia, industry, non-profit, regulatory bodies, patient advocacy
- Provides development advice to academia and industry
- Multidisciplinary, comprehensive input
- Independent of funding stream
- Patient foundations such as PPMD partner with TACT and integrate TACT reviews in its diligence for funding
What TACT is Addressing

- Fragmented and subjective approach to funding translation
- Rigor of assessments variable across funders and researchers
- Compounds moving to clinic despite non compelling preclinical data leading to (predictable) failure in the clinic
- Often lacking realistic development perspective
- Multiple compounds to go into clinic - limited number of patients

Sophisticated diligence process beyond the abilities of typical academic advisory committee resulting in greatly increased credibility with non profit, industry and VC funders
Compounds Reviewed to Date

- TACT has held 11 meetings and reviewed 32 programs
 - 22 industry, 10 academia
 - 16 novel, 16 repurposed
 - 18 small molecule and 14 biologics
 - 16 pre-clinical and 16 clinical programs
 - 3 had received Orphan drug designation from European Medicines Agency and 3 from Food and Drug Administration.
Key Points

- The number of drugs in trials for DMD is unprecedented.
- Participation in clinical trials has both positives and negatives and is not the same as early access.
- Facilitating drug development is a primary mission of TACT and PPMD.
Center for Genetic Muscle Disorders
Kennedy Krieger Institute

wagnerk@kennedykrieger.org
Telephone: 443-923-9525